综合研究

活跃边水气藏水侵系数与稳产期关系研究

  • 何云峰 ,
  • 杨小腾
展开
  • 中国石化西北油田分公司雅克拉采气厂,新疆 库车 842017
何云峰(1984—),男,本科,工程师,从事凝析气藏的开发工作。地址:新疆库车县塔北邮电所转雅克拉采气厂,邮政编码:842017。E-mail:heyunfeng101@163.com

收稿日期: 2019-05-31

  网络出版日期: 2021-02-04

Relation between water invasion coefficient and stable production period in gas reservoirs with active edge water

  • Yunfeng He ,
  • Xiaoteng Yang
Expand
  • Yakela Gas Exploitation Plant, Sinopec Northwest China Oilfield Company, Kuqa, Xinjiang 842017, China

Received date: 2019-05-31

  Online published: 2021-02-04

摘要

目前对活跃边水气藏稳产期末的采出程度预测没有特别有效的手段,经常出现产量在没有任何征兆的情况下发生快速递减。以雅克拉水驱气藏储层长岩心物理模型为基础,通过水驱气实验模拟水侵过程气水两相渗流特征;以水驱物质平衡方程为理论方法,引入水侵系数概念描述气藏水侵特征。由于注入水的含烃孔隙体积与水侵系数概念一致,通过水驱实验模拟活跃边水气藏水侵对气藏的影响是可行的。实验结果表明,当注入水达到0.3 ~ 0.45倍HPV(含烃孔隙体积)时,水驱前缘突破,天然气产能从稳产期进入快速递减期。生产历史表明,中下气层水侵系数达到0.33 ~ 0.36时,天然气产能快速递减,实验和生产实际基本吻合。通过对上气层开展水侵系数计算,2019年8月至2020年2月水侵系数达到0.33 ~ 0.36时,进入稳产末期,和数值模拟结果基本一致,需及时对高风险井进行调整。

本文引用格式

何云峰 , 杨小腾 . 活跃边水气藏水侵系数与稳产期关系研究[J]. 油气藏评价与开发, 2021 , 11(1) : 124 -128 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.01.017

Abstract

At present, there is no particularly effective method to predict the degree of production at the end of the stable production period of gas reservoirs with active edge water. The production often declines rapidly without warning. Based on the physical model of long core of gas reservoirs by water flooding in Yakela area, the characteristics of gas-water two-phase seepage during water invasion are simulated by the experiment of gas recovery by water flooding. Taking the material balance equation of water flooding as the theoretical method, the concept of water invasion coefficient is introduced to describe the water invasion characteristics of gas reservoirs. As the hydrocarbon pore volume(HPV) of the injected water is consistent with the concept of water invasion coefficient, it is feasible to simulate the effect of water invasion on gas reservoir by water flooding experiments. The experimental results show that when the injected water reached 0.3 ~ 0.45 times of HPV, the waterflood front breaks through, and the gas production enters the rapid decline period from the stable production period. The production history shows that when the water invasion coefficients of the middle-lower gas reservoir reach 0.33 ~ 0.36, the gas production decreases rapidly, and the experiment is basically consistent with the production practice. By calculating the water invasion coefficient of upper gas reservoir, when the water invasion coefficients reach 0.33 ~ 0.36 from August 2019 to February 2020, the end of stable production period will come. It is basically consistent with the results of numerical simulation and necessary to adjust the high risk wells in time.

参考文献

[1] 陈庆轩. 有水气藏动态分析方法及应用研究[D]. 成都:西南石油大学, 2017.
[1] Chen Qinxuan. Study on dynamic analysis method and application of water gas reservoirs[D]. Chengdu: Southwest Petroleum University, 2017.
[2] Yu Qingyan, Hu Xangyang, Liu Pengcheng, et al. Researches on calculation methods of aquifer influx for gas reservoirs with aquifer support[J]. Journal of Petroleum Science and Engineering, 2019,177:889-898.
[3] 冯曦, 彭先, 李隆新, 等. 碳酸盐岩气藏储层非均质性对水侵差异化的影响[J]. 天然气工业, 2018,38(6):67-75.
[3] Feng Xi, Peng Xian, Li Longxin, et al. Influence of reservoir heterogeneity on water invasion differentiation in carbonate gas reservoirs[J]. Natural Gas Industry, 2018,38(6):67-75.
[4] 宋代诗雨. 水驱气藏动态特征及分析方法研究[D]. 成都:西南石油大学, 2011.
[4] Song-Dai Shiyu. Study on dynamic characteristics and analysis method of water drive gas reservoir[D]. Chengdu: Southwest Petroleum University, 2011.
[5] Li Gao, Ren Wenxi, Meng Yingfeng, et al. Micro-flow kinetics research on water invasion in tight sandstone reservoirs[J]. Journal of Natural Gas Science and Engineering, 2014,20:184-191.
[6] Song Hongqing, Cao Yang, Yu Mingxu, et al. Impact of permeability heterogeneity on production characteristics in water-bearing tight gas reservoirs with threshold pressure gradient[J]. Journal of Natural Gas Science and Engineering, 2015,22:172-181.
[7] 方飞飞, 李熙喆, 高树生, 等. 边、底水气藏水侵规律可视化实验研究[J]. 天然气地球科学, 2016,27(12):2246-2252.
[7] Fang Feifei, Li Xize, Gao Shusheng, et al. Visual simulation experimental study on water invasion rules of gas reservoir with edge and bottom water[J]. Natural Gas Geoscience, 2016,27(12):2246-2252.
[8] 李士伦. 气田与凝析气田开发[M]. 北京: 石油工业出版社, 2004.
[8] Li Silun. Gas field and condensate field development[M]. Beijing: Petroleum Industry Press, 2004.
[9] 张烈辉, 罗程程, 刘永辉, 等. 气井积液预测研究进展[J]. 天然气工业, 2019,39(1):57-63.
[9] Zhang Liehui, Luo Chenchen, Liu Yonghui, et al. Research progress in liquid loading prediction of gas wells[J]. Natural Gas Industry, 2019,39(1):57-63.
[10] 李江涛, 孙凌云, 项燚伟, 等. 水驱气藏水淹风险描述及防控对策[J]. 天然气工业, 2019,39(5):79-84.
[10] Li Jiangtao, Sun Lingyun, Xiang Yiwei, et al. Description and prevention & control technical countermeasures of water flooding risk in water-drive gas reservoirs[J]. Natural Gas Industry, 2019,39(5):79-84.
[11] 徐俊杰, 王起京, 梁康. 碳酸盐岩底水气藏型储气库气井水淹机制分析——以X储气库为例[J]. 天然气勘探与开发, 2018,41(4):76-79.
[11] Xu Junjie, Wang Qijing, Liang Kang. Waterout mechanism of gas wells in underground gas storage rebuilt from carbonate-rock gas reservoirs with bottom water: A case study on X underground gas storage[J]. Natural Gas Exploration and Development, 2018,41(4):76-79.
[12] 孙雷, 闫成海, 潘毅, 等. 长岩心驱替中不同位置的相渗曲线计算[J]. 西南石油大学学报(自然科学版), 2014,36(2):139-144.
[12] Sun Lei, Yan Chenhai, Pan Yi, et al. Calculation of relative permeability curve at different position in long core displacement experiment[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2014,36(2):139-144.
[13] 陈科贵, 陈福煊, 魏二团, 等. 长岩心实验确定地层侵入深度和污染深度的研究[J]. 西南石油大学学报(自然科学版), 1996,18(4):43-46.
[13] Chen Kegui, Chen Fuxuan, Wei Ertuan, et al. Study on the determination of formation invasion and damage depth by long core experiments[J]. Journal of Southwest Petroleum Institute(Science & Technology Edition), 1996,18(4):43-46.
[14] 王进安, 袁广均, 张军, 等. 长岩心注二氧化碳驱油物理模拟实验研究[J]. 特种油气藏, 2001,8(2):75-78.
[14] Wang Jinan, Yuan Guangjun, Zhang Jun, et al. Experimental study on physical modelling of crude displacement with carbon dioxide drive for long core[J]. Special Oil & Gas Reservoirs, 2001,8(2):75-78.
[15] 李传亮. 油藏工程原理[M]. 北京: 石油工业出版社, 2011.
[15] Li Chuanliang. Fundamentals of reservoir engineering[M]. Beijing: Petroleum Industry Press, 2011.
[16] 杨琨, 王怒涛, 张建民. 水驱气藏水侵量及水体参数计算方法研究[J]. 大庆石油地质与开发, 2005,24(5):48-50.
[16] Yang Kun, Wang Nutao, Zhang Jianmin. Research on calculation methods of water influx and water body parameters in water drive gas reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2005,24(5):48-50.
[17] 俞启泰. 计算未饱和油藏弹性能量系数与水侵系数的一种方法[J]. 石油勘探与开发, 1985,12(2):68-71.
[17] Yu Qitao. A method for calculating the elastic energy factor and the water influx factor of the unsaturated oil reservoir[J]. Petroleum Exploration and Development, 1985,12(2):68-71.
[18] 石兴春, 胡文革. 雅克拉凝析气田高效开发技术与实践[M]. 北京: 中国石化出版社, 2017: 86-88.
[18] Shi Xingchun, Hu Wenge G. Yakela condensate gas field[M]. Beijing: China Petrochemical Press, 2017: 86-88.
文章导航

/