页岩气勘探

联合建模技术在深层页岩气双复杂地区深度偏移成像中的应用

  • 沈杰 ,
  • 张剑飞 ,
  • 王金龙 ,
  • 李立红 ,
  • 林娜 ,
  • 王鹏
展开
  • 中国石化西南油气分公司勘探开发研究院,四川 成都 610041
沈杰(1984—),男,硕士研究生,副研究员,主要从事地震资料处理工作。地址:四川省成都市高新区(南区)吉泰路688号,中国石化西南科研基地,邮政编码:610041。E-mail:14520800@qq.com

收稿日期: 2020-09-25

  网络出版日期: 2021-02-04

基金资助

“十三五”国家科技重大专项“大型油气田及煤层气开发”(2016ZX05002);“十三五”国家科技重大专项“南方海相页岩气勘探潜力与目标评价”(2017ZX05036-003)

Application of joint modeling technology in depth migration imaging of deep shale gas in dual complex area

  • Jie Shen ,
  • Jianfei Zhang ,
  • Jinlong Wang ,
  • Lihong Li ,
  • Na Lin ,
  • Peng Wang
Expand
  • Research Institute of Petroleum Exploration and Development, Sinopec Southwest China Oil and Gas Company, Chengdu, Sichuan 610041, China

Received date: 2020-09-25

  Online published: 2021-02-04

摘要

永川新店子“双复杂”区近地表因素变化大,构造复杂,资料信噪比低,导致准确成像难度大。页岩气勘探开发过程中,面临新店子背斜构造内幕不清、局部小断层成像不准、水平井设计轨迹与实钻不符等问题。常规网格层析反演方法在低信噪比区速度建模中适用性较差,既难以求准浅层速度,消除复杂近地表对成像的影响,又难以在中深层实现有效数据驱动,准确更新中深层速度。针对“双复杂”地区深度域建模问题,采用全偏移距初至层析反演求取近地表速度,选取合适界面,将浅层与中深层模型进行融合。在网格层析迭代过程中,应用构造模型对速度进行约束,实现了速度低频量与构造分布相契合及高频收敛。应用结果表明,浅中深融合建模与构造约束网格层析技术的联合应用弥补了通常方法的不足,形成的最终速度场精度更高,“双复杂”地区成像得到较明显改善,更有力地支撑了该区勘探开发。

本文引用格式

沈杰 , 张剑飞 , 王金龙 , 李立红 , 林娜 , 王鹏 . 联合建模技术在深层页岩气双复杂地区深度偏移成像中的应用[J]. 油气藏评价与开发, 2021 , 11(1) : 22 -28 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.01.004

Abstract

In the “dual complex” area of Xindianzi, Yongchuan, all the reasons that the near surface factors vary greatly, the structure is complex, and the signal-to-noise ratio of data is low make the accurate imaging difficult. During the shale gas exploration and development, there are some problems of Xindianzi such as unclear anticline structure, inaccurate imaging of local small faults, and inconsistency of horizontal well design trajectory with actual drilling. The conventional grid tomography inversion method has poor applicability in velocity modeling of low signal-to-noise ratio area. It is difficult not only to obtain the quasi shallow velocity and eliminate the influence of complex near surface on imaging, but also to realize effective data driving in the middle and deep layers and update the velocity accurately in the middle and deep layers. In order to solve the problem of depth domain modeling in “dual complex” area, full offset first break tomography inversion is used to obtain near surface velocity, then the appropriate interface is selected to fuse the models of shallow and medium depth. In the iterative process of grid tomography, the constraints on velocity by the construction model can realize the corresponding between low-frequency velocity and structural distribution, and get high-frequency convergence. The application results show that the joint application of shallow, medium and deep fusion modeling and structural constraint grid tomography technology make up for the shortcomings of the conventional methods, the resulting final velocity field is more accurate, and the imaging of the “dual complex” area is obviously improved. The results strongly support the exploration and development of this area.

参考文献

[1] 巫芙蓉, 郭海洋, 刁永波, 等. 塔里木盆地秋里塔格构造带双复杂构造地震处理技术[J]. 天然气工业, 2019,39(4):28-36.
[1] Wu Furong, Guo Haiyang, Diao Yongbo, et al. Seismic processing technologies for double complex structures in the Qiulitage structural belt, Tarim Basin[J]. Natural Gas Industry, 2019,39(4):28-36.
[2] 徐敏, 杨晓, 王静, 等. 叠前深度偏移技术在复杂断块井位目标优化中的应用[J]. 中国石油勘探, 2015,20(3):73-78.
[2] Xu Min, Yang Xiao, Wang Jing, et al. Application of Pre-stack Depth Migration Technology for Optimization of Well location Target in Complicated Faulted Block Structure[J]. China Petroleum Explora, 2015,20(3):73-78.
[3] 张宇, 闫更平, 王林, 等. 塔中M工区低信噪比地震资料处理技术对策[J]. 油气藏评价与开发, 2017,7(1):14-19.
[3] Zhang Yu, Yan Genping, Wang Lin, et al. Treatment technologies and countermeasure of low signal-to-noise ratio seismic data in M block of mid-Tarim area[J]. Reservoir Evaluation and Development, 2017,7(1):14-19.
[4] 陈骁, 董霞, 曾鸣, 等. 叠前深度偏移在复杂构造成像研究中的应用——以川东三岔坪高陡构造为例[J]. 天然气工业, 2013,33(3):15-18.
[4] Chen Xiao, Dong Xia, Zeng Ming, et al. Application of prestack depth migration to complex structure imaging: A case study from the Sanchaping high-steep structure in the eastern Sichuan Basin[J]. Natural Gas Industry, 2013,33(3):15-18.
[5] 赵路子, 张光荣, 陈伟, 等. 深层复杂地质构造带地震勘探关键技术——以四川盆地龙门山断褶带北段为例[J]. 天然气工业, 2018,38(1):39-48.
[5] Zhao Lu, Zhang Guangrong, Chen Wei, et al. Key seismic survey technologies for deep complex geological structures: A case study of the northern section of the Longmenshan Fault Fold Belt in the Sichuan Basin[J]. Natural Gas Industry, 2018,38(1):39-48.
[6] Jones I F, Goodwin M C, Berranger I D, et al. Application of anisotropic 3D reverse time migration to complex north sea imaging[C]// paper SEG-2007-2140 presented at the 2007 SEG Annual Meeting, 23-28 September, 2007, San Antonio, Texas, USA.
[7] 李源, 刘伟, 刘微, 等. 各向异性全速度建模技术在山地地震成像中的应用[J]. 石油物探, 2015,54(2):157-164.
[7] Li Yuan, Liu Wei, Liu Wei, et al. Application of anisotropic full velocity modeling technology in mountain seismic imaging[J]. Geophysical Prospecting for Petroleum, 2015,54(2):157-164.
[8] 聂法健. 基于地震层位约束的速度建模技术在普光气田的应用[J]. 非常规油气, 2017,4(2):1-7.
[8] Nie Fajian. Application of velocity modeling technology based on seismic horizon constraint in Puguang Gas Filed[J]. Unconventional Oil & Gas, 2017,4(2):1-7.
[9] 符力耘, 肖又军, 孙伟家, 等. 库车坳陷复杂高陡构造地震成像研究[J]. 地球物理学报, 2013,56(6):1985-2001.
[9] Fu Liyun, Xiao Youjun, Sun Weijia, et al. Seismic imaging studies of complex high and steep structures in Kuqa depression[J]. Chinese Journal of Geophysics, 2013,56(6):1985-2001.
[10] 潘兴祥, 秦宁, 曲志鹏, 等. 叠前深度偏移层析速度建模及应用[J]. 地球物理学进展, 2013,28(6):3080-3085.
[10] Pan Xingxiang, Qin Ning, Qu Zhipeng, et al. Tomography velocity modeling and application of prestack depth migration[J]. Progress in Geophysics, 2013,28(6):3080-3085.
[11] 张敏, 李振春. 偏移速度分析与建模方法综述[J]. 勘探地球物理进展, 2007,30(6):421-427.
[11] Zhang Min, Li Zhenchun. Review of migration velocity analysis and modeling methods[J]. Progress in Exploration Geophysics, 2007,30(6):421-427.
[12] 马彦彦, 李国发, 张星宇, 等. 叠前深度偏移速度建模方法分析[J]. 石油地球物理勘探, 2014,49(4):687-693.
[12] Ma Yanyan, Li Guofa, Zhang Xingyu, et al. Analysis of velocity modeling method for prestack depth migration[J]. Oil Geophysical Prospecting, 2014,49(4):687-693.
[13] 薛花, 杜民, 文鹏飞, 等. 网格层析速度反演方法在准三维西沙水合物中的应用[J]. 物探与化探, 2017,41(5):846-851.
[13] Xue Hua, Du Min, Wen Pengfei, et al. The application of grid tomography method to quasi three dimensional of Xisha hydrate[J]. Geophysical and Geochemical Exploration, 2017,41(5):846-851.
[14] 管文胜, 段文胜, 查明, 等. 利用基于模型的层析速度反演进行低幅度构造成像[J]. 石油地球物理勘探, 2017,52(1):87-93.
[14] Guan Wensheng, Duan Wensheng, Zha Ming, et al. Low amplitude structural imaging using model-based tomographic velocity inversion[J]. Oil Geophysical Prospecting, 2017,52(1):87-93.
[15] 王兆旗, 李立胜, 叶月明, 等. 倾角约束的非线性层析反演速度建模技术[J]. 物探化探计算技术, 2018,40(2):156-161.
[15] Wang Zhaoqi, Li Lisheng, Ye Yueming, et al. Dip constrained non-linear tomography inversion technology for velocity modeling[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2018,40(2):156-161.
[16] 李振伟, 杨锴, 倪瑶, 等. 基于立体层析反演的偏移速度建模应用研究[J]. 石油物探, 2014,53(4):444-452.
[16] Li Zhenwei, Yang Kai, Ni Yao, et al. Application of migration velocity modeling based on stereo tomography inversion[J]. Geophysical Prospecting for Petroleum, 2014,53(4):444-452.
[17] 金昌昆, 张建中. 地震立体层析成像的实现方法及效果分析[J]. CT理论与应用研究, 2014,23(6):939-950.
[17] Jin Changkun, Zhang Jianzhong. Implementation methods of stereotomography and analysis of influence factors on its results[J]. CT Theory and Applications, 2014,23(6):939-950.
[18] 胡光辉, 杜泽源, 何兵红, 等. 近地表复杂区早至波全波形反演建模技术与应用[J]. 石油物探, 2019,58(6):811-818.
[18] Hu Guanghui, Du Zeyuan, He Binghong, et al. etal. Full waveform inversion based on early arrival waves and its application incomplex near-surface area[J]. Geophysical Prospecting for Petroleum, 2019,58(6):811-818.
[19] 尹力, 方伍宝, 李振春, 等. 测井模型约束全波形反演的应用[J]. 大庆石油地质与开发, 2015,34(3):156-160.
[19] Yin Li, Fang Wubao, Li Zhenchun, et al. Application of the well logging model constraining the full waveform inversion[J]. Petroleum Geology and Oilfield Development in Daqing, 2015,34(3):156-160.
[20] 杨午阳, 王西文, 雍学善, 等. 地震全波形反演方法研究综述[J]. 地球物理学进展, 2013,28(2):766-776.
[20] Yang Wuyang, Wang Xiwen, Yong Xueshan, et al. The review of seismic full waveform inversion method[J]. Progress in Geophysics, 2013,28(2):766-776.
[21] 任俊兴, 孟庆利, 杨帆. 基于构造约束的逐层网格层析速度建模技术在南川地区的应用[J]. 油气藏评价与开发, 2020,10(1):17-21.
[21] Ren Junxing, Meng Qingli, Yang Fan. Application of structural constraint grid tomography velocity modeling in Nanchuan area[J]. Reservoir Evaluation and Development, 2020,10(1):17-21.
[22] 彭海龙, 赫建伟, 任婷, 等. 基于地质构造约束的3D速度建模方法在琼东南盆地深水复杂断块区域成像中的应用[J]. 物探与化探, 2018,42(3):537-544.
[22] Peng Hailong, He Jianwei, Ren Ting, et al. The application of 3D velocity modeling based on geological constraint in Qiongdongnan basin deep water complex fault block area[J]. Geophysical and Geochemical Exploration, 2018,42(3):537-544.
[23] 谢飞, 李佩, 黄中玉, 等. 高斯射线束叠前深度偏移成像研究[J]. 石油物探, 2013,52(1):65-71.
[23] Xie Fei, Li Pei, Huang Zhongyu, et al. Research on Gaussian ray beam prestack depth migration imaging[J]. Geophysical Prospecting for Petroleum, 2013,52(1):65-71.
[24] 杨晓东, 秦宁, 王延光. 常用叠前深度偏移方法特点分析与实例对比[J]. 地球物理学进展, 2015,30(2):740-745.
[24] Yang Xiaodong, Qin Ning, Wang Yanguang. Analysis and examples of commonly used prestack depth migration methods[J]. Progress in Geophysics, 2015,30(2):740-745.
文章导航

/