页岩气勘探

基于地层水指标的页岩气保存条件评价——以渝东南地区五峰组—龙马溪组页岩气藏为例

  • 张光荣 ,
  • 聂海宽 ,
  • 唐玄 ,
  • 张培先 ,
  • 彭勇民
展开
  • 1.中国地质大学(北京), 北京 100083
    2.自然资源部页岩气资源战略评价重点实验室,北京 100083
    3.页岩油气富集机理与有效开发国家重点实验室,北京 100083
    4.中国石化石油勘探开发研究院, 北京 100083
    5.中国石化华东油气分公司勘探开发研究院, 江苏 南京 210011
张光荣(1996—), 男, 在读硕士研究生, 主要从事非常规油气地质研究。地址:北京市海淀区学院路29号,邮政编码:100083。E-mail:2106180043@cugb.edu.cn

收稿日期: 2020-06-28

  网络出版日期: 2021-02-04

基金资助

国家自然科学基金“四川盆地五峰组—龙马溪组页岩气储层演化机理及评价方法”(41872124);国家自然科学基金“四川盆地及周缘龙潭组海陆过渡相页岩复杂有机质孔隙发育机制”(41972132);国家自然科学基金“中国南方寒武系页岩有机质、流体和孔隙演化耦合机制研究”(41730421)

Evaluation of shale gas preservation conditions based on formation water index: A case study of Wufeng-Longmaxi Formation in Southeastern Chongqing

  • Guangrong Zhang ,
  • Haikuan Nie ,
  • Xuan Tang ,
  • Peixian Zhang ,
  • Yongmin Peng
Expand
  • 1. China University of Geosciences(Beijing), Beijing 100083, China
    2. Key Laboratory of Strategy Evaluation for Shale Gas, Ministry of Natural Resources of the People's Republic of China, Beijing 100083, China
    3. Shale Oil and Gas Enrichment Mechanism and Effective Development of State Key Laboratory, Beijing 100083, China
    4. Sinopec Petroleum Exploration and Production Research Institute, Beijing 100083, China
    5. Research Institute of Exploration & Development, Sinopec East China Oil and Gas Company, Nanjing, Jiangsu 210011, China

Received date: 2020-06-28

  Online published: 2021-02-04

摘要

四川盆地及其周缘五峰组—龙马溪组页岩气勘探开发已取得较好成果,但不同井位之间页岩含气量差异大。通过对渝东南地区PY1HF、JY1HF、NY1HF、LY1等井位地层水的矿化度、地化指标、水型等分析后认为:CaCl2水型反映较好的页岩气保存条件,NaHCO3和Na2SO4水型反映地层水与大气水有不同程度的贯通,保存条件相对较差。基于渝东南地区发育的大型断裂和残留向斜构造及五峰组—龙马溪组地层水特征,将其地下水渗流方式对应划分为大型断裂发育区地层水下渗型和残留向斜区地层水向心流型两种类型,分别对应不同的页岩气保存条件。大型断裂发育的地区,地表水沿断裂下渗深度较大,对页岩气藏破坏较大,多表现为微含气或不含气状态;残留向斜区地层水向心流型,向斜深部保存条件相对较好。在向斜边缘地表水与地层水形成自由交替带,页岩气藏的保存条件较差,因而含气性较差,而越靠近核部地区受大气水下渗影响越弱,保存条件越好。

本文引用格式

张光荣 , 聂海宽 , 唐玄 , 张培先 , 彭勇民 . 基于地层水指标的页岩气保存条件评价——以渝东南地区五峰组—龙马溪组页岩气藏为例[J]. 油气藏评价与开发, 2021 , 11(1) : 47 -55 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.01.007

Abstract

Significant progress has been made in the exploration and development of shale gas in the Wufeng-Longmaxi Formation of Sichuan Basin, but shale gas content varies greatly among different well locations. Through the analysis of formation water salinity, geochemical index and formation water type in Well-PY1HF, Well-JY1HF, Well-NY1HF, Well-LY1 and other wells in Southeastern Chongqing, it is found that CaCl2 water type reflects good shale gas preservation conditions, while the water types of NaHCO3 and Na2SO4 reflect formation water and atmospheric water are interconnected to different extent, leading to a relatively poor preservation condition. Based on the characteristics of large-scale faults and residual syncline structures developing in Southeastern Chongqing and the formation water characteristics of Wufeng-Longmaxi Formation, the groundwater seepage mode can be divided into two types: the infiltration type in the large-scale fault development area and the centripetal flow type in the residual syncline area, corresponding to different shale gas preservation conditions. In the area with large-scale faults, the surface water infiltrates deeply along the faults, causing great damage to shale gas reservoir, most of them contain few gases. The formation water in the residual syncline is centripetal flow, and the deep part of the syncline is relatively well preserved. The surface water and the formation water form a free alternating zone at the syncline edge, and the preservation condition of shale gas reservoir is poor, thus the gas bearing property is poor. In the core part of the syncline, the closer to the core part, the weaker the influence of atmospheric water infiltration is, and the better the preservation condition will be.

参考文献

[1] Nie H K, He Z L, Wang R Y, et al. Temperature and origin of fluid inclusions in shale veins of Wufeng-Longmaxi Formations, Sichuan Basin, south China: Implications for shale gas preservation and enrichment[J]. Journal of Petroleum Science and Engineering, 2020,193.
[2] Li Y Z. Mechanics and fracturing techniques of deep shale from the Sichuan Basin, SW China[J]. Energy Geoscience, 2021,2(1):1-9.
[3] 马新华, 谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018,45(1):161-169.
[3] Ma Xinhua, Xie Jun. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018,45(1):161-169.
[4] Zhao Z H, Wu K D, Fan Y, et al. An optimization model for conductivity of hydraulic fracture networks in the Longmaxi shale, Sichuan basin, Southwest China[J]. Energy Geoscience, 2020,1(1-2):47-54.
[5] Morozov V P, Jin Z J, Liang X P, et al. Comparison of source rocks from the Lower Silurian Longmaxi Formation in the Yangzi Platform and the Upper Devonian Semiluksk Formation in East European Platform[J]. Energy Geoscience, 2021,2(1):63-72.
[6] 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014,41(1):28-36.
[6] Guo Tonglou, Zhang Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014,41(1):28-36.
[7] 聂海宽, 包书景, 高波, 等. 四川盆地及其周缘下古生界页岩气保存条件研究[J]. 地学前缘, 2012,19(3):280-294.
[7] Nie Haikuan, Bao Shujing, Gao Bo, et al. A study of shale gas preservation conditions for the Lower Paleozoic in Sichuan Basin and its periphery[J]. Earth Science Frontiers, 2012,19(3):280-294.
[8] Hao F, Zou H Y, Lu Y C. Mechanisms of shale gas storage: Implications for shale gas exploration in China[J]. AAPG Bulletin, 2013,97(8):1325-1346.
[9] 梁晓伟, 牛小兵, 李卫成, 等. 鄂尔多斯盆地油田水化学特征及地质意义[J]. 成都理工大学学报(自然科学版), 2012,39(5):502-508.
[9] Liang Xiaowei, Niu Xiaobing, Li Weicheng, et al. Chemical character of oil-field water in Ordos Basin and geological significance[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2012,39(5):502-508.
[10] 何顺, 秦启荣, 范存辉, 等. 川东南丁山地区页岩气保存条件分析[J]. 油气地质与采收率, 2019,26(2):24-31.
[10] He Shun, Qin Qirong, Fan Cunhui, et al. Shale gas preservation conditions in Dingshan area, Southeastern Sichuan[J]. Petroleum Geology and Recovery Efficiency, 2019,26(2):24-31.
[11] 杨冬, 虞兵, 唐浩, 等. 大宛齐油田地层水化学特征与油气保存条件分析[J]. 石油地质与工程, 2013,27(4):27-30.
[11] Yang Dong, Yu Bing, Tang Hao, et al. Chemical characteristics of formation water and analysis of oil and gas preservation conditions in Dawanqi Oilfield[J]. Petroleum Geology and Engineering, 2013,27(4):27-30.
[12] 黎琼, 欧光习, 汪生秀, 等. 渝东南地区五峰组—龙马溪组页岩气储层流体地球化学特征——以酉参2井为例[J]. 地球科学与环境学报, 2019,41(5):529-540.
[12] Li Qiong, Ou Guangxi, Wang Shengxiu, et al. Geochemical characteristics of fluid from shale gas reservoir of Wufeng-Longmaxi Formations in the Southeastern Chongqing, China——A case study of Well YC2[J]. Journal of Earth Sciences and Environment, 2019,41(5):529-540.
[13] 何希鹏, 高玉巧, 唐显春, 等. 渝东南地区常压页岩气富集主控因素分析[J]. 天然气地球科学, 2017,28(4):654-664.
[13] He Xipeng, Gao Yuqiao, Tang Xianchun, et al. Analysis of major factors controlling the accumulation in normal pressure shale gas in the southeast of Chongqing[J]. Natural Gas Geoscience, 2017,28(4):654-664.
[14] He X P, Zhang P X, He G S, et al. Evaluation of sweet spots and horizontal-well-design technology for shale gas in the basin-margin transition zone of southeastern Chongqing, SW China[J]. Energy Geoscience, 2020,1(3-4):134-146.
[15] 聂海宽, 张柏桥, 刘光祥, 等. 四川盆地五峰组—龙马溪组页岩气高产地质原因及启示——以涪陵页岩气田JY6-2HF为例[J]. 石油与天然气地质, 2020,41(3):463-473.
[15] Nie Haikuan, Zhang Baiqiao, Liu Guangxiang, et al. Geological factors contributing to high shale gas yield in the Wufeng-Longmaxi Fms of Sichuan Basin: A case study of Well JY6-2HF in Fuling shale gas field[J]. Oil & Gas Geology, 2020,41(3):463-473.
[16] 方志雄. 中国南方常压页岩气勘探开发面临的挑战及对策[J]. 油气藏评价与开发, 2019,9(5):1-13.
[16] Fang Zhixiong. Challenges and countermeasures for exploration and development of normal pressure shale gas in southern China[J]. Reservoir Evaluation and Development, 2019,9(5):1-13.
[17] Land L S. Na-Ca-Cl saline formation waters, Frio Formation(Oligocene), south Texas, USA: Products of diagenesis[J]. Geochimica et Cosmochimica Acta, 1995,59(11):2163-2174.
[18] Wang H Y, Shi Z S, Zhao Q, et al. Stratigraphic framework of the Wufeng-Longmaxi shale in and around the Sichuan Basin, China: Implications for targeting shale gas[J]. Energy Geoscience, 2020,1(3-4):124-133.
[19] 陈勇, 王淼, 王鑫涛, 等. 东营凹陷沙四段地层水化学特征及其指示意义[J]. 中国石油大学学报(自然科学版), 2015,39(4):42-52.
[19] Chen Yong, Wang Miao, Wang Xintao, et al. Chemical characteristics and implications of formation water of the Es_4 Member in Dongying sag[J]. Journal of China University of Petroleum(Edition of Natural Science), 2015,39(4):42-52.
[20] Hanor J S. Origin of saline fluids in sedimentary basins[J]. Geological Society London Special Publications, 1994,78(1):151-174.
[21] 楼章华, 金爱民, 朱蓉, 等. 论松辽盆地地下水动力场的形成与演化[J]. 地质学报, 2001,80(1):111-120.
[21] Lou Zhanghua, Jin Aimin, Zhu Rong, et al. On the formation and evolution of groundwater dynamic field in Songliao Basin[J]. Acta Geologica Sinica, 2001,80(1):111-120.
[22] 楼章华, 朱蓉. 中国南方海相地层水文地质地球化学特征与油气保存条件[J]. 石油与天然气地质, 2006,27(5):584-593.
[22] Lou Zhanghua, Zhu Rong. Hydrogeological and hydrogeochemical characteristics and hydrocarbon preservation conditions in marine strata in southern China[J]. Oil & Gas Geology, 2006,27(5):584-593.
[23] 马永生, 楼章华, 郭彤楼, 等. 中国南方海相地层油气保存条件综合评价技术体系探讨[J]. 地质学报, 2006,85(3):406-417.
[23] Ma Yongsheng, Lou Zhanghua, Guo Tonglou, et al. An exploration on a technological system of petroleum preservation evaluation for marine strata in South China[J]. Acta Geologica Sinica, 2006,85(3):406-417.
[24] Zheng H R, Zhang J C, Qi Y C. Geology and geomechanics of hydraulic fracturing in the Marcellus shale gas play and their potential applications to the Fuling shale gas development[J]. Energy Geoscience, 2020,1(1-2):36-46.
[25] Li Y, Zhou D H, Wang W H, et al. Development of unconventional gas and technologies adopted in China[J]. Energy Geoscience, 2020,1(1-2):55-68.
[26] 李双建, 高波, 沃玉进, 等. 中国南方海相油气藏破坏类型及其时空分布[J]. 石油实验地质, 2011,33(1):43-49.
[26] Li Shuangjian, Gao Bo, Wo Yujin, et al. Destruction types and temporal-spatial distribution of marine hydrocarbon reservoirs in South China[J]. Petroleum Geology & Experiment, 2011,33(1):43-49.
[27] Nie H K, Li D H, Liu G X, et al. An overview of the geology and production of the Fuling shale gas field, Sichuan Basin, China[J]. Energy Geoscience, 2020,1(3-4):147-164.
[28] Jin Z J, Nie H K, Liu Q Y, et al. Source and seal coupling mechanism for shale gas enrichment in upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Sichuan Basin and its periphery[J]. Marine and Petroleum Geology, 2018,97:78-93.
[29] 聂海宽, 汪虎, 何治亮, 等. 常压页岩气形成机制、分布规律及勘探前景——以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报, 2019,40(2):131-143.
[29] Nie Haikuan, Wang Hu, He Zhiliang, et al. Formation mechanism, distribution and exploration prospect of normal pressure shale gas reservoir:a case study of Wufeng Formation-Longmaxi Formation in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2019,40(2):131-143.
[30] 何希鹏, 张培先, 房大志, 等. 渝东南彭水—武隆地区常压页岩气生产特征[J]. 油气地质与采收率, 2018,25(5):72-79.
[30] He Xipeng, Zhang Peixian, Fang Dazhi, et al. Production characteristics of normal pressure shale gas in Pengshui-Wulong area, southeast Chongqing[J]. Petroleum Geology and Recovery Efficiency, 2018,25(5):72-79.
[31] 张金川, 王志欣. 深盆气藏异常地层压力产生机制[J]. 石油勘探与开发, 2003,30(1):28-31.
[31] Zhang Jinchuan, Wang Zhixin. Formation mechanism of abnormal pressures in deep-basin gas accumulation[J]. Petroleum Exploration and Development, 2003,30(1):28-31.
文章导航

/