页岩气勘探

页岩气勘探开发实验测试技术挑战与发展方向

  • 高玉巧 ,
  • 蔡潇 ,
  • 何希鹏 ,
  • 丁安徐 ,
  • 高和群 ,
  • 吴艳艳 ,
  • 夏威
展开
  • 中国石化华东油气分公司勘探开发研究院,江苏 南京 210019
高玉巧(1978—),女,博士,高级工程师,本刊第二届编委会委员,主要从事页岩气勘探开发研究。地址:江苏省南京市建邺区江东中路375号金融城9号楼,邮政编码:210019。E-mail: gaoyq.hdsj@sinopec.com

收稿日期: 2020-12-18

  网络出版日期: 2021-04-30

基金资助

国家科技重大专项“彭水地区常压页岩气勘探开发示范工程”(2016ZX05061);中国石化科技项目“华东探区天然气富集规律与目标评价”(P20059-6)

Challenges and development direction of experimental testing technology for shale gas exploration and development

  • Yuqiao GAO ,
  • Xiao CAI ,
  • Xipeng HE ,
  • Anxu DING ,
  • Hequn GAO ,
  • Yanyan WU ,
  • Wei XIA
Expand
  • Research Institute of Exploration and Development, Sinopec East China Oil and Gas Company, Nanjing, Jiangsu 210019, China

Received date: 2020-12-18

  Online published: 2021-04-30

摘要

随着中国页岩气工业的蓬勃发展,页岩气地质评价实验测试技术不断完善。国内目前形成了一套以岩心前处理、矿物成分、地球化学、孔隙结构、物理性质、力学性质及含气量为主的七大类技术系列。而页岩储层作为一种细粒沉积,相对于传统砂岩、砾岩、粉砂岩等碎屑岩储层,具有典型低孔、特低渗特征,且天然裂缝及微纳米孔隙发育,由此给页岩气地质评价实验技术带来了4个方面的挑战:即沉积微相多变、成岩演化复杂、孔隙结构表征困难和流体流动机理多元。为进一步加快中国页岩气勘探开发进程,解决实际生产过程中瓶颈和问题,对页岩气地质评价实验测试技术提出了4个方向的展望:①储层精细描述亟待由静态表征向动态演化发展;②储层孔隙及孔隙内流体赋存方式的研究向真实地质条件下的模拟实验发展;③孔隙表征由单一尺度向宏观、微观多尺度融合发展;④基于大数据的实验数据挖掘向产能评价和预测发展,以期为中国页岩气勘探开发技术和理论发展提供重要依据。

本文引用格式

高玉巧 , 蔡潇 , 何希鹏 , 丁安徐 , 高和群 , 吴艳艳 , 夏威 . 页岩气勘探开发实验测试技术挑战与发展方向[J]. 油气藏评价与开发, 2021 , 11(2) : 164 -175 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.02.004

Abstract

With the rapid development of the shale gas industry in China, the shale gas geological evaluation experimental testing technology has been continuously improved. At present, a series of technology, mainly including core pretreatment, mineral composition, geochemistry, pore structure, physical properties, mechanical properties and gas content, has been formed in China. Compared with traditional sandstone, conglomerate, siltstone and other clastic reservoirs, shale reservoir, as a fine-grained deposit, has typical characteristics of low porosity and ultra-low permeability, and the natural fractures and micro nano pores develop. Therefore, it brings four challenges to the experimental technology of shale gas geological evaluation: the sedimentary microfacies are changeable, the diagenetic evolution is complex, the pore structure characterization is difficult and the fluid flow mechanism is diverse. In order to further speed up the progress of shale gas exploration and development in China and solve the bottleneck and problems in the actual production process, four directions are put forward for the experimental testing technology of shale gas geological evaluation, that is, ①the fine description of reservoir urgently needs to be developed from static characterization to dynamic evolution, ②the researches of reservoir pore and fluid occurrence mode in pore develop into simulation experiment under real geological conditions, ③the porosity characterization develops from single scale to macro-micro multi-scale integration, ④experimental data mining based on big data develops into capacity evaluation and prediction. All these are expected to provide reference for the development of the shale gas exploration and development technology and theory in China.

参考文献

[1] MAVOR M. Barnett shale gas-in place volume including sorbed and free gas volume[C]// Southwest Section AAPG Convention, March 1-4, 2003, Fort Worth, Texas, USA.
[2] ROSS D J K, BUSTIN R M. Characterizing the shale gas resource potential of Devonian-Mississippian strata in the western Canada sedimentary basin Application of an intergrated formation evaluation[J]. AAPG Bulletin, 2008,92(1):87-125.
[3] 邹才能, 赵群, 董大忠, 等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017,28(12):1781-1796.
[3] ZOU Caineng, ZHAO Qun, DONG Dazhong, et al. Geological characteristics,main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017,28(12):1781-1796.
[4] 董大忠, 王玉满, 李新景, 等. 中国页岩气勘探开发新突破及发展前景思考[J]. 天然气工业, 2016,36(1):19-32.
[4] DONG Dazhong, WANG Yuman, LI Xinjing, et al. Break through and prospect of shale gas exploration and development in China[J]. Natural Gas Industry, 2016,36(1):19-32.
[5] 徐旭辉, 申宝剑, 李志明, 等. 页岩气实验地质评价技术研究现状及展望[J]. 油气藏评价与开发, 2020,10(1):1-8.
[5] XU Xuhui, SHEN Baojian, LI Zhiming, et al. Status and prospect of experimental technologies of geological evaluation for shale gas[J]. Reservoir Evaluation and Development, 2020,10(1):1-8.
[6] 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018,45(4):561-574.
[6] MA Yongsheng, CAI Xunyu, ZHAO Pengrong. China’s shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018,45(4):561-574.
[7] 郭旭升, 郭彤楼, 魏志红, 等. 中国南方页岩气勘探评价的几点思考[J]. 中国工程科学, 2012,14(6):101-105.
[7] GUO Xusheng, GUO Tonglou, WEI Zhihong, et al. Thoughts on shale gas exploration in southern China[J]. Engineering Science, 2012,14(6):101-105.
[8] 何希鹏. 四川盆地东部页岩气甜点评价体系与富集高产影响因素[J]. 天然气工业, 2021,41(1):59-71.
[8] HE Xipeng. Sweet spot evaluation system and enrichment and high yield influential factors of shale gas in Nanchuan area of eastern Sichuan Basin[J]. Natural Gas Industry, 2021,41(1):59-71.
[9] 邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J]. 石油学报, 2012,33(2):173-187.
[9] ZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characteristics,genesis and prospects of conventional and unconventional hydrocarbon accumulations:taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012,33(2):173-187.
[10] 毕赫, 姜振学, 李鹏, 等. 渝东南地区黔江凹陷五峰组—龙马溪组页岩储层特征及其对含气量的影响[J]. 天然气地球科学, 2014,25(8):1275-1283.
[10] BI He, JIANG Zhenxue, LI Peng, et al. Shale reservoir characteristics and its influence on gas content of Wufeng-Longmaxi Formation in the Southeastern Chongqing[J]. Natural Gas Geoscience, 2014,25(8):1275-1283.
[11] ROSS D J K, BUSTIN R M. The importance of shale composition and pore structure upon gas storage potential of shale-gas reservoirs[J]. Marine and Petroleum Geology, 2019,26(6):916-927.
[12] 王红岩, 周尚文, 刘德勋, 等. 页岩气地质评价关键[J]. 天然气工业, 2020,40(6):1-17.
[12] WANG Hongyan, ZHOU Shangwen, LIU Dexun, et al. Progress and prospect of key experimental technologies for shale gas geological evaluation[J]. Natural Gas Industry, 2020,40(6):1-17.
[13] 帅琴, 黄瑞成, 高强, 等. 页岩气实验测试技术现状与研究进展[J]. 岩矿测试, 2012,31(6):931-938.
[13] SHUAI Qin, HUANG Ruicheng, GAO Qiang, et al. Research development of analytical techniques for shale gas[J]. Rock and Mineral Analysis, 2012,31(6):931-938.
[14] 丁安徐, 李小越, 蔡潇, 等. 页岩气地质评价实验测试技术研究进展[J]. 天然气与石油, 2014,32(2):43-48.
[14] DING Anxu, LI Xiaoyue, CAI Xiao, et al. Research progress of shale gas geological evaluation test technology[J]. Natural Gas and Oil, 2014,32(2):43-48.
[15] 张汉荣, 王强, 倪楷, 等. 川东南五峰-龙马溪组页岩储层六性特征及主控因素分析[J]. 石油实验地质, 2016,38(3):320-325.
[15] ZHANG Hanrong, WANG Qiang, NI Kai, et al. Six characteristics and main controlling factors of shale reservoirs in the Wufeng-Longmaxi formations, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016,38(3):320-325.
[16] 李晓, 赫建明, 尹超, 等. 页岩结构面特征及其对水力压裂的控制作用[J]. 石油与天然气地质, 2019,40(3):653-660.
[16] LI Xiao, HE Jianming, YIN Chao, et al. Characteristics of the shale bedding planes and their control on hydraulic fracturing[J]. Oil & Gas Geology, 2019,40(3):653-660.
[17] 朱如凯, 金旭, 王晓琦, 等. 复杂储层多尺度数字岩石评价[J]. 地球科学, 2018,43(5):1773-1782.
[17] ZHU Rukai, JIN Xu, WANG Xiaoqi, et al. Multi-Scale Digital Rock Evaluation on Complex Reservoir[J]. Earth Science, 2018,43(5):1773-1782.
[18] 王社教, 王兰生, 黄金亮, 等. 上扬子区志留系页岩气成藏条件[J]. 天然气工业, 2009,29(5):45-50.
[18] WANG Shejiao, WANG Lansheng, HUANG Jinliang, et al. Accumulation conditions of shale gas reservoirs in Silurian of the Upper Yangtze region[J]. Natural Gas Industry, 2009,29(5):45-50.
[19] 王鹏万, 邹辰, 李娴静, 等. 昭通示范区页岩气富集高产的地质主控因素[J]. 石油学报, 2018,39(7):744-753.
[19] WANG Pengwan, ZOU Chen, LI Xianjing, et al. Main geological controlling factors of shale gas enrichment and high yield in Zhaotong demonstration area[J]. Acta Petrolei Sinica, 2018,39(7):744-753.
[20] 陈尚斌, 左兆喜, 朱炎铭, 等. 页岩气储层有机质成熟度测试方法适用性研究[J]. 天然气地球科学, 2015,26(3):564-574.
[20] CHEN Shangbin, ZUO Zhaoxi, ZHU Yanming, et al. Applicability of the Testing Method for the Maturity of Organic Matter in Shale Gas Reservoirs[J]. Natural Gas Geoscience, 2015,26(3):564-574.
[21] 程鹏, 肖贤明. 很高成熟度富有机质页岩的含气性问题[J]. 煤炭学报, 2013,38(5):737-741.
[21] CHENG Peng, XIAO Xianming. Gas content of organic-rich shales with very high maturities[J]. Journal of China Coal Society, 2013,38(5):737-741.
[22] 刘德汉, 肖贤明, 田辉, 等. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J]. 科学通报, 2013,58:1228-1241.
[22] LIU Dehan, XIAO Xianming, TIAN Hui, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: Methodology and geological applications[J]. Chinese Science Bulletin, 2013,58:1228-1241.
[23] 于炳松. 页岩气储层孔隙分类与表征[J]. 地学前缘, 2013,20(4):211-220.
[23] YU Bingsong. Classification and characterization of gas shale pore system[J]. Earth Science Frontiers, 2013,20(4):211-220.
[24] 吴松涛, 朱如凯, 崔京钢, 等. 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发, 2015,42(2):167-176.
[24] WU Songtao, ZHU Rukai, CUI Jinggang, et al. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015,42(2):167-176.
[25] 陈科洛, 张廷山, 陈晓慧, 等. 页岩微观孔隙模型构建——以滇黔北地区志留系龙马溪组页岩为例[J]. 石油勘探与开发, 2018,45(3):396-405.
[25] CHEN Keluo, ZHANG Tingshan, CHEN Xiaohui, et al. Model construction of micro-pores in shale: A case study of Silurian Longmaxi Formation shale in Dianqianbei area, SW China[J]. Petroleum Exploration and Development, 2018,45(3):396-405.
[26] 高之业, 范毓鹏, 胡钦红, 等. 川南地区龙马溪组页岩有机质孔隙差异化发育特征及其对储集空间的影响[J]. 石油科学通报, 2020,5(1):1-16.
[26] GAO Zhiye, FAN Yupeng, HU Qinhong, et al. Differential development characteristics of organic matter pores and their impact on reservoir space of Longmaxi Formation shale from the south Sichuan Basin[J]. Petroleum Science Bulletin, 2020,5(1):1-16.
[27] 蔡潇. 原子力显微镜在页岩微观孔隙结构研究中的应用[J]. 电子显微学报, 2015,34(4):326-331.
[27] CAI Xiao. Application of atomic force microscopy in the study of microscopic pore structure of shale[J]. Journal of Chinese Electron Microscopy Society, 2015,34(4):326-331.
[28] 田华, 张水昌, 柳少波, 等. 压汞法和气体吸附法研究富有机质页岩孔隙特征[J]. 石油学报, 2012,33(3):419-427.
[28] TIAN Hua, ZHANG Shuichang, LIU Shaobo, et al. Determination of organic-rich shale pore features by mercury injection and gas adsorption methods[J]. Acta Petrolei Sinica, 2012,33(3):419-427.
[29] 何希鹏, 齐艳平, 何贵松, 等. 渝东南构造复杂区常压页岩气富集高产主控因素再认识[J]. 油气藏评价与开发, 2019,9(5):32-39.
[29] HE Xipeng, QI Yanping, HE Guisong, et al. Further understanding of main controlling factors of normal pressure shale gas enrichment and high yield in the area with complex structure of the southeast area of Chongqing[J]. Reservoir Evaluation and Development, 2019,9(5):32-39.
[30] 时贤, 蒋恕, 卢双舫, 等. 利用纳米压痕实验研究层理性页岩岩石力学性质——以渝东南酉阳地区下志留统龙马溪组为例[J]. 石油勘探与开发, 2019,46(1):155-164.
[30] SHI Xian, JIANG Shu, LU Shuangfang, et al. Investigation of mechanical properties of bedded shale by nanoindentation tests: A case study on Lower Silurian Longmaxi Formation of Youyang area in southeast Chongqing, China[J]. Petroleum Exploration and Development, 2019,46(1):155-164.
[31] 许心怡, 岳长涛, 李术元, 等. 四川志留系龙马溪组页岩等温解吸及甲烷碳同位素分馏特征[J]. 石油科学通报, 2018,3(1):1-10.
[31] XU Xinyi, YUE Changtao, LI Shuyuan, et al. Isothermal desorption and methane carbon isotope fractionation of shale gas in the Silurian Longmaxi formation, Sichuan[J]. Petroleum Science Bulletin, 2018,3(1):1-10
[32] 高玉巧, 高和群, 何希鹏, 等. 四川盆地东南部页岩气同位素分馏特征及对产能的指示意义[J]. 石油实验地质, 2019,41(6):865-870.
[32] GAO Yuqiao, GAO Hequn, HE Xipeng, et al. Methane isotope fractionation characteristics of shale gas and its significance as a productivity indicator[J]. Petroleum Geology & Experiment, 2019,41(6):865-870.
[33] 梁狄刚, 郭彤楼, 边立曾, 等. 中国南方海相生烃成藏研究的若干新进展(三)南方四套区域性海相烃源岩的沉积相及发育的控制因素[J]. 海相油气地质, 2009,14(2):1-19.
[33] LIANG Digang, GUO Tonglou, BIAN Lizeng, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China(Part 3): Controlling factors on the sedimentary facies and development of palaeozoic marine source rocks[J]. Marine Origin Petroleum Geology, 2009,14(2):1-19.
[34] 曹涛涛, 邓模, 宋之光, 等. 黄铁矿对页岩油气富集成藏影响研究[J]. 天然气地球科学, 2018,29(3):404-414.
[34] CAO Taotao, DENG Mo, SONG Zhiguang, et al. Study on the effect of pyrite on the accumulation of shale oil and gas[J]. Natural Gas Geoscience, 2018,29(3):404-414.
[35] 赵迪斐, 郭英海, 朱炎铭, 等. 龙马溪组页岩黄铁矿微观赋孔特征及地质意义[J]. 沉积学报, 2018,36(5):864-876.
[35] ZHAO Difei, GUO Yinghai, ZHU Yanming, et al. Micropore Characteristics and Geological Significance of Pyrite in Shale Rocks of Longmaxi Formation[J]. Acta Sedimentologica Sinica, 2018,36(5):864-876.
[36] 王朋飞, 姜振学, 吕鹏, 等. 重庆周缘下志留统龙马溪组和下寒武统牛蹄塘组页岩有机质孔隙发育及演化特征[J]. 天然气地球科学, 2018,29(7):997-1008.
[36] WANG Pengfei, JIANG Zhenxue, LYU Peng, et al. Organic matter pores and evolution characteristics of shales in the Lower Silurian Longmaxi Formation and the Lower Cambrian Niutitang Formation in periphery of Chongqing[J]. Natural Gas Geoscience, 2018,29(7):997-1008.
[37] 蔡潇, 王亮, 靳雅夕, 等. 渝东南地区页岩有机孔隙类型及特征[J]. 天然气地球科学, 2016,27(3):513-519.
[37] CAI Xiao, WANG Liang, JIN Yaxi, et al. Types and characteristics of organic pore in shale gas reservoir of southeastern Chongqing area[J]. Natural Gas Geoscience, 2016,27(3):513-519.
[38] 高玉巧, 蔡潇, 张培先, 等. 渝东南盆缘转换带五峰组—龙马溪组页岩气储层孔隙特征与演化[J]. 天然气工业, 2018,38(12):15-25.
[38] GAO Yuqiao, CAI Xiao, ZHANG Peixian, et al. Pore characteristics and evolution of Wufeng-Longmaxi Fms shale gas reservoirs in the basin-margin transition zone of SE Chongqing[J]. Natural Gas Industry, 2018,38(12):15-25.
[39] 俞凌杰, 范明, 腾格尔, 等. 埋藏条件下页岩气赋存形式研究[J]. 石油实验地质, 2016,38(4):438-444.
[39] YU Lingjie, FAN Ming, Tenger, et al. Shale gas occurrence under burial conditions[J]. Petroleum Geology & Experiment, 2016,38(4):438-444.
[40] 刘洪林, 王红岩. 中国南方海相页岩吸附特征及其影响因素[J]. 天然气工业, 2012,32(9):5-9.
[40] LIU Honglin, WANG Hongyan. Adsorption Characteristics and Influencing Factors of Marine Shale in South China[J]. Natural Gas Industry, 2012,32(9):5-9.
文章导航

/