油气藏评价与开发 >
2021 , Vol. 11 >Issue 2: 184 - 189
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2021.02.006
川南深层页岩气超临界吸附解吸附特征研究
收稿日期: 2020-10-20
网络出版日期: 2021-04-30
基金资助
中国石化科技部重点科技项目“深层页岩气综合评价及开发技术政策”(P18058-1)
Characteristics of supercritical adsorption and desorption of deep shale gas in South Sichuan
Received date: 2020-10-20
Online published: 2021-04-30
页岩气吸附量主要受埋深、矿物成分、温度、压力等因素的影响,川南页岩气具有埋深大、高温、高压的特点,明确这类页岩储层超临界状态的吸附解吸附特征对于落实气藏储产量意义重大。综合采用室内物理模拟实验和分子动力学模拟相结合的方法,构建并优选了伊利石+干酪根复合表征模型,拓展建立了川南深层页岩气全域吸附量多元预测模型,明确了气藏的吸附解吸附特征。实验分析结果表明:随着地层压力的增加,吸附量逐渐增加,压力高于15 MPa后吸附量增幅逐步变缓;气藏原始条件下吸附气量占总气量体积的20 %~25 %;地层压力降至20 MPa时自由气采出程度约70 %~90 %,吸附气采出程度约25 %~40 %。
杨建 , 詹国卫 , 赵勇 , 任春昱 , 屈重玖 . 川南深层页岩气超临界吸附解吸附特征研究[J]. 油气藏评价与开发, 2021 , 11(2) : 184 -189 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.02.006
The adsorption capacity of shale gas is mainly influenced by the factors such as burial depth, mineral composition, temperature and pressure. The shale gas in South Sichuan has the characteristics of large buried depth, high temperature and high pressure. It has great significance to determine the adsorption and desorption characteristics of this kind of shale reservoir in supercritical state for the implementation of gas reservoir production. By the combination of indoor physical simulation experiments and molecular dynamics simulation, the composite characterization model of Illite and Kerogen is constructed and optimized, the multiple prediction model of whole area adsorption capacity of the deep shale gas in South Sichuan is developed, and the adsorption and desorption characteristics of the gas reservoir are clarified. The experimental results show that: with the increase of formation pressure, the adsorption capacity increases gradually, and when the pressure is higher than 15 MPa, the increase of adsorption capacity gradually slows down. Under the original conditions of gas reservoir, the adsorbed gas volume accounts for 20 % ~ 25 % of the total gas volume. When the formation pressure drops to 20 MPa, the recovery degree of free gas is about 70 % ~ 90 %, and the recovery degree of adsorbed gas is about 25 % ~ 40 %.
[1] | 庞河清, 熊亮, 魏力民, 等. 川南深层页岩气富集高产主要地质因素分析[J]. 天然气工业, 2019,39(S1):78-84. |
[1] | PANG Heqing, XIONG Liang, WEI Limin, et al. Analysis on the main geological factors of shale gas enrichment and high yield in the deep strata of South Sichuan[J]. Natural Gas Industry, 2019,39(S1):78-84. |
[2] | 谢军, 张浩淼, 佘朝毅, 等. 地质工程一体化在长宁国家级页岩气示范区中的实践[J]. 中国石油勘探, 2017,22(1):21-28. |
[2] | XIE Jun, ZHANG Haomiao, SHE Chaoyi, et al. Practice of geology-engineering integration in Changning State Shale Gas Demonstration Area[J]. China Petroleum Exploration, 2017,22(1):21-28. |
[3] | 梁兴, 徐政语, 张朝, 等. 昭通太阳背斜区浅层页岩气勘探突破及其资源开发意义[J]. 石油勘探与开发, 2020,47(1):11-28. |
[3] | LIANG Xing, XU Zhengyu, ZHANG Zhao, et al. Breakthrough of shallow shale gas exploration in Taiyang anticline area and its significance for resource development in Zhaotong, Yunnan province, China[J]. Petroleum Exploration and Development, 2020,47(1):11-28. |
[4] | 马永生, 蔡勋育, 赵培荣, 等. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018,45(4):561-574. |
[4] | MA Yongsheng, CAI Xunyu, ZHAO Peirong, et al. China’s shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018,45(4):561-574. |
[5] | 陈尚斌, 张楚, 刘宇. 页岩气赋存状态及其分子模拟研究进展与展望[J]. 煤炭科学技术, 2018,46(1):36-44. |
[5] | CHEN Shangbin, ZHANG Chu, LIU Yu. Research progress and prospect of shale gas occurrence and its molecular simulation[J]. Coal Science and Technology, 2018,46(1):36-44. |
[6] | CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002,86(11):1921-1938. |
[7] | MAVOR M. Barnett shale gas-in-place volume including sorbed and free gas volume[C]. Fort Worth Geological Society. Southwest Section AAPG Convention, Texas, March 1-4, 2003. |
[8] | 聂海宽, 张金川, 张培先, 等. 福特沃斯盆地Barnett页岩气藏特征及启示[J]. 地质科技情报, 2009,28(2):87-93. |
[8] | NIE Haikuan, ZHANG Jinchuan, ZHANG Peixian, et al. Shale gas Reservoir Characteristics of Barnett Shale Gas Reservoir in Fort Worth Basin[J]. Geological Science and Technology Information, 2009,28(2):87-93. |
[9] | 杨文新, 李继庆, 苟群芳. 四川盆地焦石坝地区页岩吸附特征室内实验[J]. 天然气地球科学, 2017,28(9):1350-1355. |
[9] | YANG Wenxin, LI Jiqing, GOU Qunfang. Experiment study on shale adsorption properties for Jiaoshiba shale, Sichuan Basin[J]. Natural Gas Geoscience, 2017,28(9):1350-1355. |
[10] | 唐建信. 彭水地区龙马溪组页岩甲烷等温吸附模型对比研究[J]. 油气藏评价与开发, 2019,9(4):73-77. |
[10] | TANG Jianxin. Comparative studies on methane isothermal adsorption models of shale of Longmaxi formation in Pengshui area[J]. Reservoir Evaluation and Development, 2019,9(4):73-77. |
[11] | 赵玉集, 郭为, 熊伟, 等. 页岩等温吸附/解吸影响因素研究[J]. 天然气地球科学, 2014,25(6):940-946. |
[11] | ZHAO Yuji, GUO Wei, XIONG Wei, et al. Study of impact factors on shale gas adsorption and desorption[J]. Natural Gas Geoscience, 2014,25(6):940-946. |
[12] | 王瑞, 张宁生, 刘晓娟, 等. 页岩气吸附与解吸附机理研究进展[J]. 科学技术与工程, 2013,13(19):5562-5565. |
[12] | WANG Rui, ZHANG Ningsheng, LIU Xiaojuan, et al. Research progress of mechanism of adsorption and desorption of gas in shale[J]. Science Technology and Engineering, 2013,13(19):5562-5565. |
[13] | 孔德涛, 宁正福, 杨峰, 等. 页岩气吸附规律研究[J]. 科学技术与工程, 2014,14(6):108-111. |
[13] | KONG Detao, NING Zhengfu, YANG Feng, et al. Study of methane adsorption on shales[J]. Science Technology and Engineering, 2014,14(6):108-111. |
[14] | 王玉普, 左罗, 胡志明, 等. 页岩高温高压吸附实验及吸附模型[J]. 中南大学学报(自然科学版), 2015,46(11):4129-4135. |
[14] | WANG Yupu, ZUO Luo, HU Zhiming, et al. Experiment of supercritical methane adsorption on shale and adsorption modelling[J]. Journal of Central South University (Science and Technology), 2015,46(11):4129-4135. |
[15] | 梁彬, 姜汉桥, 李俊键, 等. 考虑多因素的页岩气吸附能力计算模型[J]. 特种油气藏, 2015,22(1):121-124. |
[15] | LIANG Bin, JIANG Hanqiao, LI Junjian, et al. Calculation model of multi-factor shale gas adsorption capacity[J]. Special Oil and Gas Reservoirs, 2015,22(1):121-124. |
[16] | 曲占庆, 林珊珊, 张杰. 多组分和吸附对页岩气储量计算的影响[J]. 特种油气藏, 2012,19(3):141-143. |
[16] | QU Zhanqing, LIN Shanshan, ZHANG Jie. Impacts of multi-component and adsorption on shale gas reserve estimation[J]. Special Oil and Gas Reservoirs, 2012,19(3):141-143. |
[17] | 熊亮, 魏力民, 史洪亮. 川南龙马溪组储层分级综合评价技术及应用[J]. 天然气工业, 2019,39(S1):60-65. |
[17] | XIONG Liang, WEI Limin, SHI Hongliang. Comprehensive evaluation technology and application of reservoir classification of Longmaxi formation in South Sichuan[J]. Natural Gas Industry, 2019,39(S1):60-65. |
[18] | 王晋, 房晓红, 曾凡桂. 伊利石1M多型结构模型的构建及XRD模拟[J]. 硅酸盐学报, 2015,43(8):1162-1166. |
[18] | WANG Jin, FANG Xiaohong, ZENG Fangui. Structure modeling of illite-1M and its XRD simulation[J]. Journal of the Chinese Ceramic Society, 2015,43(8):1162-1166. |
[19] | 韩永华. 高岭石、蒙脱石表面性质及其分散机理的量子化学研究[D]. 北京:中国矿业大学(北京), 2017. |
[19] | HAN Yonghua. Quantum chemistry study on the surface properties and dispersion of kaolinite and montmorillonite[D]. Beijing: China University of Mining & Technology, 2017. |
[20] | LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society, 1918,40(9):1361-1403. |
/
〈 | 〉 |