页岩气勘探

渝东南川地区龙马溪组地应力场特征

  • 张斗中 ,
  • 汤济广 ,
  • 蔡俊
展开
  • 1.长江大学非常规油气湖北省协同创新中心,湖北 武汉 430100
    2.长江大学地球科学学院,湖北 武汉 430100
张斗中(1994—),男,在读博士研究生,从事矿产普查与勘探。地址:湖北省武汉市蔡甸区大学路特1号长江大学,邮政编码:430100。E-mail: 2428786389@qq.com

收稿日期: 2020-09-21

  网络出版日期: 2021-04-30

基金资助

中国石化项目“渝东南盆缘转换带页岩气富集主控因素研究”(P18057-2);油气资源与探测国家重点实验室开放基金“前陆冲断带横向断层差异变形机理研究”(wx2018115)

Characteristics of geostress field of Longmaxi Formation in Nanchuan area, Eastern Chongqing

  • Douzhong ZHANG ,
  • Jiguang TANG ,
  • Jun CAI
Expand
  • 1. Hubei Cooperative Innovation Center for Unconventional Oil and Gas, Yangzte University, Wuhan, Hubei 430100, China
    2. School of Geosciences, Yangzte University, Wuhan, Hubei 430100, China

Received date: 2020-09-21

  Online published: 2021-04-30

摘要

地应力场的研究对于南川地区页岩气的开发具有重要的理论和现实意义。为明确渝东南川地区志留系龙马溪组现今地应力场的分布情况,通过区内钻井的井壁坍塌方向确定了现今地应力的水平最大主应力方向,并收集区内钻井的地应力大小。通过地震资料计算区内岩石力学参数的分布情况,结合南川地区志留系龙马溪组底界构造图划分地质单元,建立地质模型。利用关键井的地应力资料作为约束,进行了南川地区龙马溪组地应力场的有限元数值模拟,分析了地应力场的分布规律。研究结果表明,区域地应力场以挤压应力场为主,现今最大主应力的方向约为NEE25°—SEE20°,大小为56.12 ~ 93.79 MPa;最小主应力的方向约为NNW25°—NNE20°,大小为48.06 ~ 71.67 MPa。应力大小整体上呈现了东低西高的分布趋势,断层对地应力方向和大小均有影响,岩石力学性质对地应力大小也有影响。

本文引用格式

张斗中 , 汤济广 , 蔡俊 . 渝东南川地区龙马溪组地应力场特征[J]. 油气藏评价与开发, 2021 , 11(2) : 190 -196 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.02.007

Abstract

The study of geostress field has important theoretical and practical significance for the development of shale gas in Nanchuan area. In order to determine the distribution of the current geostress field of Silurian Longmaxi Formation in Nanchuan area, Eastern Chongqing, the maximum horizontal principal stress direction of the current geostress has been determined according to the direction of borehole collapse of key wells in the area, and the magnitude of the geostress of drilled wells has been collected. The distribution of the rock mechanics parameters in the area has been calculated on the basis of the seismic data, the geological units have been divided based on the tectonic map of the bottom of Silurian Longmaxi Formation in Nanchuan area, and a geological model has been established. Taking the ground stress data of key wells as the constraint, the finite element numerical simulation of the geostress field of Longmaxi Formation in Nanchuan area has been carried out, and the distribution law of the geostress field has been analyzed. The results show that the main stress field is the extrusion stress field. The current maximum principal stress is about NEE25° to SEE20°, 56.12~93.79 MPa while the minimum principal stress is approximately NNW25° to NNE20°, 48.06~71.67 MPa. On the whole, the stress has a distribution trend of low in the east and high in the west. The fault has an influence on the direction and the magnitude of the stress while the mechanical properties of rocks also influence the stress magnitude.

参考文献

[1] 周文, 闫长辉, 王世泽, 等. 油气藏现今地应力场评价方法及应用[M]. 北京: 地质出版社, 2007.
[1] ZHOU Wen, YAN Changhui, WANG Shize, et al. Evaluation method and application of in-situ stress field in oil and gas reservoir[M]. Beijing: Geological Publishing House, 2007.
[2] HAGHI A H, KHARRAT R, ASFF M R, et al. Present-day stress of the central Persian Gulf: lmplications for drilling and well performance[J]. Tectonophysics, 2013,608:1429-1441.
[3] 戴俊生, 商琳, 王彤达, 等. 富台潜山凤山组现今地应力场数值模拟及有效裂缝分布预测[J]. 油气地质与采收率, 2014,21(6):33-36.
[3] DAI Junsheng, SHANG Lin, WANG Tongda, et al. Numerical simulation of current in-situ stress field of Fengshan formation and distribution prediction of effective fracture in Futai buried hill[J]. Petroleum Geology and Recovery Efficiency, 2014,21(6):33-36
[4] 宫云鹏. 南川地区构造特征及对龙马溪组页岩储层物性的控制作用[D]. 徐州:中国矿业大学, 2015.
[4] GONG Yunpeng. Structural feature and its control on reservoir properties of the Longmaxi Formation in Nanchuan Area[D]. Xuzhou: China University of Mining and Technology, 2015.
[5] 何龙, 王云鹏, 陈多福, 等. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J]. 天然气地球科学, 2019,30(2):203-218.
[5] HE Long, WANG Yunpeng, CHEN Duofu, et al. Relationship between sedimentary environment and organic matter accumulation in the black shale of Wufeng-Longmaxi Formations in Nanchuan area, Chongqing[J]. Natural Gas Geoscience, 2019,30(2):203-218.
[6] 黄籍中. 四川盆地页岩气与煤层气勘探前景分析[J]. 岩性油气藏, 2009,21(2):116-120.
[6] HUANG Jizhong. Exploration prospect of shale gas and coal-bed methane in Sichuan Basin[J]. Lithologic Reservoirs, 2009,21(2):116-120.
[7] 陈泽明, 雍自权, 朱杰平, 等. 四川盆地东南部南川地区五峰组龙马溪组页岩特征[J]. 成都理工大学学报:自然科学版, 2013,40(6):696-702.
[7] CHEN Zeming, YONG Ziquan, ZHU Jieping, et al. Features of Wufeng Formation and Longmaxi Formation shale in Nanchuan,southeast of Sichuan, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2013,40(6):696-702.
[8] 高莉. 黔北-渝南地区五峰-龙马溪页岩储层物性研究[D]. 北京:中国地质科学院, 2019.
[8] GAO Li. Physical properties of Wufeng-Longmaxi Shale Reservoir in North Guizhou-South Chongqing Area[D]. Beijing: Chinese Academy of Geological Sciences, 2019.
[9] HIGGINS S M, GOODWIN S A, DONALD A, et al. Anisotropic stress models improve completion design in the Baxter shale[C]// paper SPE-115736-MS presented at the SPE Annual Technical Conference and Exhibition, 21-24 September, 2008, Denver, Colorado, USA.
[10] 张广智, 陈娇娇, 陈怀震, 等. 基于页岩岩石物理等效模型的地应力预测方法研究[J]. 地球物理学报, 2015,58(06):2112-2122.
[10] ZHANG Guangzhi, CHEN Jiaojiao, CHEN Huaizhen, et al. Prediction for in-situ formation stress of shale based on rock physics equivalent model[J]. Chinese Journal of Geophysics, 2015,58(6):2112-2122.
[11] 王珂, 张惠良, 张荣虎, 等. 塔里木盆地大北气田构造应力场解析与数值模拟[J]. 地质学报,20017, 91(11):2557~ 2572.
[11] WANG Ke, ZHANG Huiliang, ZHANG Ronghu, et al. Analysis and numerical simulation of tectonic stress field in the Dabei Gas Field, Tarim Basin[J]. Acta Geologica Sinica, 2017,91(11):2557-2572.
[12] 邓起东, 张培震, 冉勇康, 等. 中国活动构造基本特征[J]. 中国科学D辑, 2002,32(12):1020-1030.
[12] DENG Qidong, ZHANG Peizhen, RAN Yongkang, et al. Basic characteristics of active tectonics in China[J]. Science In China (Series D), 2002,32(12):1020-1030.
[13] 郑文俊, 张培震, 袁道阳, 等. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报, 2019,25(5):699-721.
[13] ZHENG Wenjun, ZHANG Peizhen, YUAN Daoyang, et al. Basic characteristics of active tectonics and associated geodynamic processes in continental China[J]. Journal of Geomechanics, 2019,25(5):699-721.
[14] ANSYS Inc. Theory Release 5.7[M]. 12th ed. Canonsburg PA: SAS IP, Inc, 2001: 668-669, 928.
[15] 邱登峰, 郑孟林, 张瑜, 等. 塔中地区构造应力场数值模拟研究[J]. 大地构造与成矿学, 2012,36(2):168-175.
[15] QIU Dengfeng, ZHENG Menglin, ZHANG Yu, et al. Numerical simulation of the tectonic stress field in the Tazhong Area[J]. Geotectonica et Metallogenia, 2012,36(2):168-175.
[16] 李春林, 郭鹏, 任德生. 大民屯凹陷构造应力场及其与油气运聚关系[J]. 油气地质与采收率, 2013,19(6):47-49.
[16] LI Chunlin, GUO Peng, REN Desheng. Relationship between tectontic stress field and migration and accumulation of oil and gas in Damintun depression[J]. Petroleum Geology and Recovery Efficiency, 2020,19(6):47-49.
[17] 王珂, 戴俊生, 冯建伟, 等. 塔里木盆地克深前陆冲断带储层岩石力学参数研究. 中国石油大学学报:自然科学版, 2014,38(5):25-33.
[17] WANG Ke, DAI Junsheng, FENG Jianwei, et al. Research on reservoir rock mechanical parameters of Keshen foreland thrust belt in Tarim Basin[J]. Journal of China University of Petroleum, 2014,38(5):25-33.
[18] 谢润成, 周文, 陶莹, 等. 有限元分析方法在现今地应力场模拟中的应用[J]. 石油钻探技术, 2008,36(2):60-63.
[18] XIE Runcheng, ZHOU Wen, TAO Ying, et al. Application of finite element analysis in the simulation of the in-situ stress field[J]. Petroleum Drilling Techniques, 2008,36(2):60-63.
[19] 路保平, 鲍洪志. 岩石力学参数求取方法进展[J]. 石油钻探技术, 2005,33(5) : 44-47.
[19] LU Baoping, BAO Hongzhi. Advances in calculation methods for rock mechanic parameters[J]. Petroleum Drilling Techniques, 2005,33(5):44-47.
[20] 陈勉, 金衍, 张广清. 石油工程岩石力学基础[M]. 北京: 石油工业出版社, 2011
[20] CHEN Mian, JIN Yan, ZHANG Guangqing. Fundamentals of rock mechanics in petroleum engineering[M]. Beijing: Petroleum Industry Press, 2011.
[21] 徐荣忠. 东北梨树断陷断陷期构造应力场分析[D]. 西安:西安石油大学, 2014.
[21] XU Rongzhong. The analysis of tectonic stress field of Lishu Fault Depression in Northeast China[D]. Xi’an: Xi’an Shiyou University, 2014.
[22] 孙礼健, 朱元清, 杨光亮, 等. 断层端部及附近地应力场的数值模拟[J]. 大地测量与地球动力学, 2009,29(2):7-12.
[22] SUN Lijian, ZHU Yuanqing, YANG Guangliang, et al. Numerical simulation of ground stress field at ends and vicinity of a fault[J]. Journal of Geodesy and Geodynamics, 2009,29(2):7-12.
文章导航

/