油气藏评价与开发 >
2021 , Vol. 11 >Issue 3: 291 - 296
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2021.03.003
延川南深部煤层气地质工程一体化压裂增产实践
收稿日期: 2021-02-25
网络出版日期: 2021-06-24
基金资助
中国石化科技部项目“延川南深层煤层气稳产技术研究”(P19019-4);中国石化科技部项目“低压煤系气藏地质工程一体化高效开发技术”(P20074-1)
Stimulation practice of geology-engineering integration fracturing for deep CBM in Yanchuannan Field
Received date: 2021-02-25
Online published: 2021-06-24
深部煤层气作为非常规天然气勘探开发的一个新领域,资源潜力巨大,但效益开发面临极大挑战,如何进行高效开发是当前亟待解决的难题。针对深部煤层气储层改造困难、支撑裂缝短的问题,基于储层压裂改造适用性分析优化压裂体系,延川南煤层气田开展了地质工程一体化储层改造关键技术攻关,取得了较好效果。研究表明:①深部煤层气资源潜力大,含气量较高,介于13~20 m3/t,但开发难度较大,单井日产气量较低,介于0~500 m3,储层改造困难;②根据井下观测,现有活性水压裂工艺技术有效支撑裂缝主要集中于井筒8 m范围以内,主缝延伸一般不到30 m;③深部煤层压裂应以形成有效长距离支撑、高导流能力的规模人工裂缝作为主攻目标,提高加砂强度配合大排量,同时研发“低密度、长运移”支撑剂,平均单井日增产气1 800 m3,为解决深部煤层气开发提供了新的思路。
姚红生 , 陈贞龙 , 郭涛 , 李鑫 , 肖翠 , 解飞 . 延川南深部煤层气地质工程一体化压裂增产实践[J]. 油气藏评价与开发, 2021 , 11(3) : 291 -296 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.03.003
As a new field of unconventional natural gas exploration and development, deep coalbed methane(CBM) has great resource potential, but its benefit development faces great challenges. How to carry out efficient development is a problem needed to be solved at present. In order to achieve stable production and steadily promote the expansion of the gas field, focusing on how to realize the problem of “long fracture and far support” in reservoir reconstruction, Yanchuannan gas field has achieved good results through fracturing optimization and tackling key problems of deep coalbed methane geology-engineering integration. The research shows that: ①Deep CBM has great resource potential with a high gas content of 13~20 m 3/t, but it is difficult to develop and transform the reservoir and the daily production of single well is low, only of 0~500 m3/d; ②According to the underground observation, in the existing active hydraulic fracturing technology, the effective supporting seams mainly distributes within eight meters of the wellbore, and the main fracture extension is generally less than 30 m; ③Deep coal seam fracturing should take the large-scale artificial fracture with long-distance support and high conductivity as the main target to improve the sand adding strength with large displacement, and at the same time develope “low density and long migration” proppant. The average daily gas production of single well is 1 800 m 3. It provides a new idea for the deep CBM development.
[1] | 刘成林, 朱杰, 车长波, 等. 新一轮全国煤层气资源评价方法与结果[J]. 天然气工业, 2009, 29(11):130-132. |
[1] | LIU Chenglin, ZHU Jie, CHE Changbo, et al. Methodologies and results of the latest assessment of coalbed methane resources in China[J]. Natural Gas Industry, 2009, 29(11):130-132. |
[2] | 穆福元, 王红岩, 吴京桐, 等. 中国煤层气开发实践与建议[J]. 天然气工业, 2018, 38(9):55-60. |
[2] | MU Fuyuan, WANG Hongyan, WU Jingtong, et al. Practice of and suggestions on CBM development in China[J]. Natural Gas Industry, 2018, 38(9):55-60. |
[3] | 门相勇, 韩征, 宫厚健, 等. 新形势下中国煤层气勘探开发面临的挑战与机遇[J]. 天然气工业, 2018, 38(9):10-16. |
[3] | MEN Xiangyong, HAN Zheng, GONG Houjian, et al. Challenges and opportunities of CBM exploration and development in China under new situations[J]. Natural Gas Industry, 2018, 38(9):10-16. |
[4] | 朱庆忠, 杨延辉, 左银卿, 等. 中国煤层气开发存在的问题及破解思路[J]. 天然气工业, 2018, 38(4):96-100. |
[4] | ZHU Qingzhong, YANG Yanhui, ZUO Yinqing, et al. CBM development in China: Challenges and solutions[J]. Natural Gas Industry, 2018, 38(4):96-100. |
[5] | 李辛子, 王运海, 姜昭琛, 等. 深部煤层气勘探开发进展与研究[J]. 煤炭学报, 2016, 41(1):24-31. |
[5] | LI Xinzi, WANG Yunhai, JIANG Zhaochen, et al. Progress and study on exploration and production for deep coalbed methane[J]. Journal of China Coal Society, 2016, 41(1):24-31. |
[6] | 高丽军, 逄建东, 谢英刚, 等. 临兴区块深部煤层气潜在可采地质模式分析[J]. 煤炭科学技术, 2019, 47(9):89-96. |
[6] | GAO Lijun, PANG Jiandong, XIE Yinggang, et al. Analysis on potential geological mining model of deep coalbed methane in Linxing Block[J]. Coal Science and Technology, 2019, 47(9):89-96. |
[7] | 孙晗森, 冯三利, 王国强, 等. 沁南潘河煤层气田煤层气直井增产改造技术[J]. 天然气工业, 2011, 31(5):21-23. |
[7] | SUN Hansen, FENG Sanli, WANG Guoqiang, et al. Stimulation technology of vertical coalbed methane gas wells in the Panhe CBM Gas Field, southern Qinshui Basin[J]. Natural Gas Industry, 2011, 31(5):21-23. |
[8] | 叶建平. 深部煤层气开发技术研究及装备研制[R]. 北京:中联煤层气有限公司, 2013. |
[8] | YE Jianping. Deep CBM development technology research and equipment development[R]. Beijing: Zhonglian coalbed methane Co., Ltd., 2013. |
[9] | 陈贞龙, 郭涛, 李鑫, 等. 延川南煤层气田深部煤层气成藏规律与开发技术[J]. 煤炭科学技术, 2019, 47(9):112-118. |
[9] | CHEN Zhenlong, GUO Tao, LI Xin, et al. Enrichment law and development technology of deep coalbed methane in South Yanchuan Coalbed Methane Field[J]. Coal Science and Technology, 2019, 47(9):112-118. |
[10] | 陈贞龙, 王烽, 陈刚, 等. 延川南深部煤层气富集规律及开发特征研究[J]. 煤炭科学技术, 2018, 46(6):80-84. |
[10] | CHEN Zhenlong, WANG Feng, CHEN Gang, et al. Study on the enrichment law and development characteristics of deep coalbed methane in southern Yanchuan[J]. Coal Science and Technology, 2018, 46(6):80-84. |
[11] | 王赛英. 鄂尔多斯盆地延川南地区煤储层特征研究[D]. 成都: 成都理工大学, 2011. |
[11] | WANG Saiying. Study on coal reservoir characteristics in South Yanchuan area of Ordos Basin[D]. Chengdu: Chengdu University of Technology, 2011. |
[12] | 郭涛. 延川南区块煤层气田构造及水文控气作用研究[J]. 煤炭科学技术, 2015, 43(12):166-169. |
[12] | GUO Tao. Study on structure and hydrological control of coalbed methane field in South Yanchuan block[J]. Coal Science and Technology, 2015, 43(12):166-169. |
[13] | 付玉通, 桑树勋, 崔彬, 等. 延川南区块深部煤层气U型分段压裂水平井地质适用性研究[J]. 煤田地质与勘探, 2018, 46(5):146-152. |
[13] | FU Yutong, SANG Shuxun, CUI Bin, et al. Geological adaptability of deep CBM U-shaped staged fracturing horizontal well in the south block of Yanchuan[J]. Coal Geology & Exploration, 2018, 46(5):146-152. |
[14] | 李相方, 蒲云超, 孙长宇, 等. 煤层气与页岩气吸附/解吸的理论再认识[J]. 石油学报, 2014, 35(6):1113-1129. |
[14] | LI Xiangfang, PU Yunchao, SUN Changyu, et al. Recognition of absorption/desorption theory in coalbed methane reservoir and shale gas reservoir[J]. Acta Petrolei Sinica, 2014, 35(6):1113-1129. |
[15] | 马东民. 煤层气吸附解吸机理研究[D]. 西安: 西安科技大学, 2008. |
[15] | MA Dongmin. Study on adsorption and desorption mechanism of coalbed methane[J]. Xi'an: Xi'an University of Science and Technology, 2008, |
[16] | 马东民, 张遂安, 蔺亚兵. 煤的等温吸附—解吸实验及其精确拟合[J]. 煤炭学报, 2011, 36(3):477-480. |
[16] | MA Dongmin, ZHANG Suian, LIN Yabing. Isothermal adsorption desorption experiment of coal and its accurate fitting[J]. Journal of China Coal Society, 2011, 36(3):477-480. |
[17] | 陈贞龙. 延川南深部煤层气田地质单元划分及开发对策[J]. 煤田地质与勘探, 2021, 49(2):13-20. |
[17] | CHEN Zhenlong. Geological unit division and development countermeasures of deep coalbed methane in Southern Yanchuan Block[J]. Coal Geology & Exploration, 2021, 49(2):13-20. |
[18] | 陈刚, 李五忠. 鄂尔多斯盆地深部煤层气吸附能力的影响因素及规律[J]. 天然气工业, 2011, 31(10):47-49. |
[18] | CHEN Gang, LI Wuzhong. Influencing factors and rules of adsorption capacity of deep coalbed methane in Ordos Basin[J]. Natural Gas Industry, 2011, 31(10):47-49. |
[19] | 唐书恒. 煤储层渗透性影响因素探讨[J]. 中国煤炭地质, 2001, 13(1):28-30. |
[19] | TANG Shuheng. Probe into the influence factors on permeability of coal reservoirs[J]. Coal Geology of China, 2001, 13(1):28-30. |
[20] | 杨兆中, 杨苏, 张健, 等. 800m以深直井煤储层压裂特征分析[J]. 煤炭学报, 2016, 41(1):100-104. |
[20] | YANG Zhaozhong, YANG Su, ZHANG Jian, et al. Fracturing characteristics analysis of 800 meters deeper coalbed methane vertical wells[J]. Journal of China Coal Society, 2016, 41(1):100-104. |
/
〈 | 〉 |