一体化评价与开发

星级管理在复杂高含水气田地质工程一体化开发中的应用

  • 刘小波 ,
  • 周涌沂 ,
  • 王智 ,
  • 雷涛 ,
  • 王翔 ,
  • 尤启东 ,
  • 曹桐生 ,
  • 陈奎 ,
  • 刘韬 ,
  • 于耀南
展开
  • 1.中国石化华北油气分公司油气开发管理部,河南 郑州 450000
    2.胜利油田东胜精攻石油开发集团股份有限公司,山东 东营 257100
    3.中国石化江苏石油分公司,江苏 南京 210003
    4.中国石化石油勘探开发研究院,北京 100000
刘小波(1978年—),男,博士,教授级高级工程师,主要从事开发管理等工作。地址:河南省郑州市中原区陇海西路199号中国石化华北油气分公司,邮政编码:450000。E-mail: liuxiaobo660.slyt@sinopec.com

收稿日期: 2021-04-07

  网络出版日期: 2021-06-24

基金资助

国家重点研发计划“增产模式下水合物游离气采收率评价技术”(2019YFC0312304-4)

Implementations of star evaluation management model in complex high water-cut gas field during its integrated development of geological engineering

  • Xiaobo LIU ,
  • Yongyi ZHOU ,
  • Zhi WANG ,
  • Tao LEI ,
  • Xiang WANG ,
  • Qidong YOU ,
  • Tongsheng CAO ,
  • Kui CHEN ,
  • Tao LIU ,
  • Yaonan YU
Expand
  • 1. Sinopec North China Petroleum Bureau, Zhengzhou, Henan 450000, China
    2. Dongsheng Jinggong Petroleum Development Group Stock Co., Ltd. of Shengli Oilfield, Dongying, Shandong 257100,China
    3. Sinopec Jiangsu Petroleum Bureau, Nanjing, Jiangsu 210003,China
    4. Sinopec Petroleum Exploration and Production Research Institute, Beijing 100000, China

Received date: 2021-04-07

  Online published: 2021-06-24

摘要

低品位、高含水、高成本等因素制约着鄂尔多斯盆地东胜气田的效益开发,针对以上难点,首次提出了星级管理理念,即以储量价值和投资效益最大化为目标,以地质工程一体化为手段,从勘探、开发、钻井、工程、生产5个维度对井位井网、钻井方式、压裂工艺、生产工艺等进行链条式优化,通过各个板块之间实时/适时反馈,实现从单井到区块再到全气田的全尺度迭代提升,最终以各单井的收益率作为星级评判标准排序实施。在此基础上,依托于智慧气田的建设,应用星级管理成果,将地下到地面进行有机结合,从而实现全气田整个生命周期内更高层次的地质工程一体化,取得以下主要成果:①形成了复杂高含水气藏精细描述方法,气层钻遇率提高20.8 %;②建立了“分级约束”井网优化体系,储量动用率提高28 %;③创新“井、震、测”一体化井壁稳定、井间协同防漏、小井眼窄间隙固井等技术,钻井周期缩短51 %、投资成本降低31 %;④采用“大排量、短时间、高砂比”压裂,直井、水平井产量增幅分别达56 %和39 %;⑤创新“多参数定量识别、两相耦合、泡排+、同井采注”技术组合,含气饱和度动用下限降至45 %。“十三五”以来,东胜气田经济效益指标持续向好,形成了可量化、可操作、可评价的地质工程一体化效益开发模式,具备推广价值。

本文引用格式

刘小波 , 周涌沂 , 王智 , 雷涛 , 王翔 , 尤启东 , 曹桐生 , 陈奎 , 刘韬 , 于耀南 . 星级管理在复杂高含水气田地质工程一体化开发中的应用[J]. 油气藏评价与开发, 2021 , 11(3) : 317 -328 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.03.006

Abstract

Poor reserve quality, high water-cut and high investment cost have become the bottleneck of developing Dongsheng Gas Field located in Ordos Basin. In this way, the star evaluation management model is put forward to enhance its production performance. It is aiming at maximizing reserve value and investment benefits through geology-engineering integration. In the process of its implementation, the well locations, well patterns, drilling, fracturing and production technologies are optimized comprehensively, then the optimizedinformation is employed to improve and instruct future planning, thus the iterative improvement is achieved from single well to the whole gas field. Finally, the internal rate of return is calculated to determine the implementation sequence for each well. On the base of intelligent gas field construction, the above achievements are reinforced by organically combining downhole management with ground coping facilities, then the higher level of integrated development of geological engineering is realized. The following main results have been achieved: ①The detailed reservoir description and evaluation methods are formed for complicated high water-cut reservoir, and the gas layer penetrating rate raises by 20.8 %. ②Hierarchical constraints system for well network optimization is established, and the reserve production rate increases by 28 %. ③The drilling technology with both borehole stability and leakage prevention being considered is innovated through the combination of logging and seismic technology, and a completion string with slim hole and narrow gap is optimized to cater its demand. After optimization, the drilling cycle is shorten by 51 %, and investment cut by 31 %. ④The “large displacement, short time and high sand ratio” fracturing method is implemented, with the vertical well output increased by 56 %, and horizontal well 39 %. ⑤The “multi-parameter quantitative identification, coupling of nozzle and pipe flow, foam drainage and gas recovery system and production and injection technology in the same well” is combined together to lower the utilization limit of gas saturation to 45 %. Ever since the 13th Five-Year Plan, the production indicators of Dongsheng Gas Field are continuously improved. Moreover, a quantitative, operative and evaluable geology-engineering integration development model, with actual value of promotion, is formed.

参考文献

[1] 胡文瑞. 地质工程一体化是实现复杂油藏效益勘探开发的必由之路[J]. 中国石油勘探, 2017, 22(1):1-5.
[1] HU Wenrui. Geology-engineering integration-a necessary way to realize profitable exploration and development of complex reservoirs[J]. China Petroleum Exploration, 2017, 22(1):1-5.
[2] 段永明, 曾焱, 刘成川, 等. 窄河道致密砂岩气藏高效开发技术——以川西地区中江气田中侏罗统沙溪庙组气藏为例[J]. 天然气工业, 2020, 40(5):58-65.
[2] DUAN Yongming, ZENG Yan, LIU Chengchuan, et al. Technologies for the efficient development of tight sandstone gas reservoirs in narrow channels: A case study of Middle Jurassic Shaximiao Formation gas reservoir in the Zhongjiang Gas Field of western Sichuan Basin[J]. Natural Gas Industry, 2020, 40(5):58-65.
[3] 谢玉洪, 蔡东升, 孙晗森, 等. 中国海油非常规气勘探开发一体化探索与成效[J]. 中国石油勘探, 2020, 25(2):27-32.
[3] XIE Yuhong, CAI Dongsheng, SUN Hansen, et al. Exploration and effect of exploration and development integration in unconventional gas of CNOOC[J]. China Petroleum Exploration, 2020, 25(2):27-32.
[4] 鲜成钢, 张介辉, 陈欣, 等. 地质力学在地质工程一体化中的应用[J]. 中国石油勘探, 2017, 22(1):75-88.
[4] XIAN Chenggang, ZHANG Jiehui, CHEN Xin, et al. Application of geomechanics in geology-engineering integration[J]. China Petroleum Exploration, 2017, 22(1):75-88.
[5] 张辉, 杨海军, 尹国庆, 等. 地质工程一体化关键技术在克拉苏构造带高效开发中的应用实践[J]. 中国石油勘探, 2020, 25(2):120-132.
[5] ZHANG Hui, YANG Haijun, YIN Guoing, et al. Application practice of key technologies of geology-engineering integration in efficient development in Kelasu structural belt[J]. China Petroleum Exploration, 2020, 25(2):120-132.
[6] 梁兴, 王高成, 张介辉, 等. 昭通国家级示范区页岩气一体化高效开发模式及实践启示[J]. 中国石油勘探, 2017, 22(1):29-37.
[6] LIANG Xing, WANG Gaocheng, ZHANG Jiehui, et al. High-efficiency integrated shale gas development model of Zhaotong National Demonstration Zone and its practical enlightenment[J]. China Petroleum Exploration, 2017, 22(1):29-37.
[7] 谢军, 鲜成钢, 吴建发, 等. 长宁国家级页岩气示范区地质工程一体化最优化关键要素实践与认识[J]. 中国石油勘探, 2019, 24(2):174-185.
[7] XIE Jun, XIAN Chenggang, WU Jianfa, et al. Optimal key elements of geoengineering integration in Changning National Shale Gas Demonstration Zone[J]. China Petroleum Exploration, 2019, 24(2):174-185.
[8] 黄浩勇, 范宇, 曾波, 等. 长宁区块页岩气水平井组地质工程一体化[J]. 科学技术与工程, 2020, 20(1):175-182.
[8] HUANG Haoyong, FAN Yu, ZENG Bo, et al. Geology engineering integration of platform well in Changning Block[J]. Science Technology and Engineering, 2020, 20(1):175-182.
[9] AHMED T. Reservoir engineering handbook[M].4th ed. UK: Gulf Professional Publishing, 2010:533-536.
[10] ECONOMIDES M J, HILL A D, ECONOMIDES C E, et al. Petroleum production systems[M]. 2nd ed. US: Prentice-Hall Publishing, 2012:636-643.
[11] MAYERHOFER M J, LOLON E P, YOUNGBLOOD J E, et al. Integration of microseismic fracture mapping results with numerical fracture network production modeling in the Barnett Shale[C]// paper SPE-102103-MS presented at the SPE Annual Technical Conference and Exhibition, September 24-27, 2006, San Antonio, Texas, USA, September,2006.
[12] 乐宏, 杨兆中, 范宇. 宁209井区裂缝控藏体积压裂技术研究与应用[J]. 西南石油大学学报(自然科学版), 2020, 42(5):86-98.
[12] LE Hong, YANG Zhaozhong, FAN Yu. Research and application of fracture control volume fracturing technology in Ning 209 area[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(5):86-98.
[13] 刘洪平, 赵彦超, 孟俊, 等. 压裂水平井产能预测方法研究综述[J]. 地质科技情报, 2015, 34(1):131-137.
[13] LIU Hongping, ZHAO Yanchao, MENG Jun, et al. Methodologies of predicting the fractured horizontal well production[J]. Geological Science and Technology Information, 2015, 34(1):131-137.
[14] BROWN M L, OZKAN E, RAGHAVAN R S, et al. Practical solutions for pressure-transient responses of fractured horizontal wells in unconventional shale reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(2):663-676.
[15] 高英. 薄互层低渗透油藏压裂开发裂缝扩展规律及产能预测研究[D]. 北京: 北京科技大学, 2015.
[15] GAO Ying. Productivity prediction of fractured well and propagation law of hydraulic fractures in thin inter-bedded low permeability reservoirs[D]. Beijing: University of Science and Technology, 2015.
[16] 吴奇, 梁兴, 鲜成钢, 等. 地质—工程一体化高效开发中国南方海相页岩气[J]. 中国石油勘探, 2015, 20(4):1-23.
[16] WU Qi, LIANG Xing, XIAN Chenggang, et al. Geoscience-to-production integration ensures effective and efficient South China marine shale gas development[J]. China Petroleum Exploration, 2015, 20(4):1-23.
[17] 张秦汶. 水平井压裂产量预测理论研究[D]. 成都: 西南石油大学, 2014.
[17] ZHANG Qinwen. The theoretical research of productivity prediction for fractured horizontal wells[D]. Chengdu: Southwest Petroleum University, 2014.
[18] 孙宏亮, 梁瑜, 王晶, 等. 吐哈油田复杂油藏勘探地质工程一体化精细管理实践[J]. 中国石油勘探, 2019, 24(2):196-202.
[18] SUN Hongliang, LIANG Yu, WANG Jing, et al. Precise management based on geology-engineering integration for exploration of complex oil reservoirs in Tuha oilfield[J]. China Petroleum Exploration, 2019, 24(2):196-202.
[19] 张合文, 崔明月, 张宝瑞, 等. 低渗透薄层难动用边际油藏地质工程一体化技术——以滨里海盆地Zanazour油田为例[J]. 中国石油勘探, 2019, 24(2):203-209.
[19] ZHANG Hewen, CUI Mingyue, ZHANG Baorui, et al. Geology-engineering integration for low-permeability and thin marginal reservoirs: a case study on Zanazour oilfield, Pre-Caspian Basin[J]. China Petroleum Exploration, 2019, 24(2):203-209.
[20] 常少英, 朱永峰, 曹鹏, 等. 地质工程一体化在剩余油高效挖潜中的实践及效果——以塔里木盆地YM32白云岩油藏为例[J]. 中国石油勘探, 2017, 22(1):46-52.
[20] CHANG Shaoying, ZHU Yongfeng, CAO Peng, et al. Application of geology-engineering integration in high-efficiency remaining oil potential tapping and its results: a case study on YM32 dolomite oil reservoirs in Tarim Basin[J] , China Petroleum Exploration, 2017, 22(1):46-52.
文章导航

/