油气藏评价与开发 >
2021 , Vol. 11 >Issue 4: 476 - 486
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2021.04.002
页岩气资源智能评价
收稿日期: 2021-04-27
网络出版日期: 2021-08-19
基金资助
国家自然科学基金项目“页岩含气性关键参数测试及智能评价系统”(41927801);国家科技重大专项“页岩气分类分级资源评价方法研究”(2016ZX05034-002-001)
Intelligent evaluation of shale gas resources
Received date: 2021-04-27
Online published: 2021-08-19
页岩气资源评价包含基于地质及勘探过程分析基础之上的资源量计算、有利区分布及经济有效性分析等内容,其核心是符合地质过程演化特点及资料掌握程度的评价方法选择、参数处理及结果分析。页岩气资源智能评价能够克服现实资源评价中的局限性,可实现从定性到定量的全程模拟与评价,具有明显的发展阶段性特点,利用机器学习、推理机等现代手段开展资源评价是现阶段的主要特点。方法选择、参数质量及评价效果是页岩气资源评价的关键,基于地质特点和勘探程度的知识库建立、数据搜集、参数分析、数据挖掘、地质推理、方法选择、智能运算、结果可信度分析、结果的空间表达及全程连续执行等,是页岩气资源智能评价的基本思路和方法。功能强大、全程连续实现的智能评价是页岩气资源评价发展的基本方向,需要在现有技术基础上不断积累与实践,在更大的范围内推动页岩气资源评价方法和技术的发展。
张金川 , 陈世敬 , 李中明 , 郎岳 , 王春艳 , 王东升 , 李振 , 唐玄 , 刘飏 , 李沛 , 仝忠正 . 页岩气资源智能评价[J]. 油气藏评价与开发, 2021 , 11(4) : 476 -486 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.04.002
Shale gas resource evaluation includes resource calculation, favorable distribution area and economic effectiveness based on geological and exploration process analysis. Its core is evaluation method selection, parameter processing and result analysis in line with geological process evolution characteristics and data mastery degree. The intelligent evaluation of shale gas resources can overcome the limitations of real resource evaluation, and can realize the whole process simulation and evaluation from qualitative to quantitative. It has obvious characteristics of development stages. The main feature of resource evaluation at this stage is to use modern means such as machine learning and inference engine. Method selection, parameter quality and evaluation effect are the keys to shale gas resource evaluation. Knowledge base establishment based on geological characteristics and exploration level, data collection, parameter analysis, data mining, geological reasoning, method selection, intelligent calculation, and reliability of results analysis, spatial expression of results and continuous execution throughout the process are the basic ideas and methods for intelligent evaluation of shale gas resources. Intelligent evaluation with powerful functions and continuous implementation throughout the whole process is the basic direction of the development of shale gas resource evaluation, which requires continuous accumulation and practice on the basis of existing technologies to promote the development of shale gas resource evaluation methods and technologies in a wider range.
[1] | 袁野, 吴超楠, 李秋莹. 人工智能产业核心技术的国际竞争态势分析[J]. 中国电子科学研究院学报, 2020, 15(11):1128-1138. |
[1] | YUAN Ye, WU Chaonan, LI Qiuying. Analysis of international competition in the core technology of artificial intelligence industry[J]. Journal of China Academy of Electronics and Information Technology, 2020, 15(11):1128-1138. |
[2] | 李麒麟, 李子萤. 国际人工智能动态分析[J]. 中国科技信息, 2020, 624(6):109-111. |
[2] | LI Qilin, LI Ziying. International AI dynamic analysis[J]. China Science and Technology Information, 2020, 624(6):109-111. |
[3] | MCCARTHY J. The inversion of functions defined by Turing machines[J]. Automata Studies, 1956: 177-181. |
[4] | DAMASSINO N. The questioning Turing Test[J]. Minds and Machines, 2020, 30(4):563-587. |
[5] | 贾承造. 中国石油工业上游发展面临的挑战与未来科技攻关方向[J]. 石油学报, 2020, 41(12):1445-1464. |
[5] | JIA Chengzao. Development challenges and future scientific and technological researches in China’s petroleum industry upstream[J]. Acta Petrolei Sinica, 2020, 41(12):1445-1464. |
[6] | 金之钧, 白振瑞, 杨雷. 能源发展趋势与能源科技发展方向的几点思考[J]. 中国科学院院刊, 2020, 35(5):576-582. |
[6] | JIN Zhijun, BAI Zhenrui, YANG Lei. Thinking on general trends of energy development and directions of energy science and technology[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(5):576-582. |
[7] | 匡立春, 刘合, 任义丽, 等. 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发, 2021, 48(1):1-11. |
[7] | KUANG Lichun, LIU He, REN Yili, et al. Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development, 2021, 48(1):1-11. |
[8] | 杨剑锋, 杜金虎, 杨勇, 等. 油气行业数字化转型研究与实践[J]. 石油学报, 2021, 42(2):248-258. |
[8] | YANG Jianfeng, DU Jinhu, YANG Yong, et al. Research and practice on digital transformation of the oil and gas industry[J]. Acta Petrolei Sinica, 2021, 42(2):248-258. |
[9] | 宋洪庆, 都书一, 周园春, 等. 油气资源开发的大数据智能平台及应用分析[J]. 工程科学学报, 2021, 43(2):179-192. |
[9] | SONG Hongqing, DU Shuyi, ZHOU Yuanchun, et al. Big data intelligent platform and application analysis for oil and gas resource development[J]. Chinese Journal of Engineering, 2021, 43(2):179-192. |
[10] | HART P E, DUDA R O, EINAUDI M T. Prospector—A computer-based consultation system for mineral exploration[J]. Journal of the International Association for Mathematical Geology, 1978, 10(5):589-610. |
[11] | 郭珺, 邹鑫, 周子康, 等. 深度学习在油气地震勘探中的应用[J]. 中国石油和化工标准与质量, 2019, 39(20):86-90. |
[11] | GUO Jun, ZOU Xin, ZHOU Zikang, et al. Application of deep learning in oil and gas seismic exploration[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(20) : 86-90. |
[12] | 郭长杰, 王浩翔, 刘晓, 等. 浅析机器学习技术在油气行业的应用场景[J]. 信息系统工程, 2017,(5):100-103. |
[12] | GUO Changjie, WANG Haoxiang, LIU Xiao, et al. A brief analysis of the application of machine learning in the oil and gas industry[J]. China CIO News, 2017, (5):100-103. |
[13] | 彭涛, 张翔. 支持向量机及其在石油勘探开发中的应用综述[J]. 勘探地球物理进展, 2007,(2):91-95. |
[13] | PENG Tao, ZHANG Xiang. Review of support vector machine and its applications in petroleum exploration and development[J]. Progress in Exploration Geophysics, 2007, (2):91-95. |
[14] | 杨剑锋, 乔佩蕊, 李永梅, 等. 机器学习分类问题及算法研究综述[J]. 统计与决策, 2019, 35(6):36-40. |
[14] | YANG Jianfeng, QIAO Peirui, LI Yongmei, et al. A review of machine-learning classification and algorithms[J]. Statistics & Decision, 2019, 35(6):36-40. |
[15] | 闵超, 代博仁, 张馨慧, 等. 机器学习在油气行业中的应用进展综述[J]. 西南石油大学学报(自然科学版), 2020, 42(6):1-15. |
[15] | MIN Chao, DAI Boren, ZHANG Xinhui, et al. A review of the application progress of machine learning in oil and gas industry[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(6):1-15. |
[16] | 孙健, 李琪, 陈明强, 等. 基于机器学习的油气水层随钻识别模型优选[J]. 西安石油大学学报(自然科学版), 2019, 34(5):79-85. |
[16] | SUN Jian, LI Qi, CHEN Mingqiang, et al. Optimization of model for identification of oil/gas and water layers while drilling based on machine learning[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2019, 34(5):79-85. |
[17] | MENELEY R A, CALVERLEY A E, LOGAN K G, et al. Resource assessment methodologies: Current status and future direction[J]. AAPG Bulletin, 2003, 87(4):535-540. |
[18] | 吴晓智, 王社教, 郑民, 等. 常规与非常规油气资源评价技术规范体系建立及意义[J]. 天然气地球科学, 2016, 27(9):1640-1650. |
[18] | WU Xiaozhi, WANG Shejiao, ZHENG min, et al. Standard system establishment for conventional and unconventional hydrocarbon resources assessment techniques and its significance[J]. Natural Gas Geoscience, 2016, 27(9):1640-1650. |
[19] | 赵文智, 胡素云, 沈成喜, 等. 油气资源评价的总体思路和方法体系[J]. 石油学报, 2005, 26(S1):25-29. |
[19] | ZHAO Wenzhi, HU Suyun, SHEN Chengxi, et al. The general idea and method system of oil and gas resource evaluation[J]. Acta Petrolei Sinica, 2005, 26(S1):25-29. |
[20] | 金之钧, 张金川. 油气资源评价技术[M]. 北京: 石油工业出版社, 1999. |
[20] | JIN zhijun, ZHANG Jinchuan. Oil and gas resource evaluation technology[M]. Beijing: Petroleum Industry Press, 1999. |
[21] | 李建忠, 吴晓智, 郑民, 等. 常规与非常规油气资源评价的总体思路、方法体系与关键技术[J]. 天然气地球科学, 2016, 27(9):1557-1565. |
[21] | LI Jianzhong, WU Xiaozhi, ZHEN Min, et al. General philosophy, method system and key technology of conventional and unconventional oil & gas resource assessment[J]. Natural Gas Geoscience, 2016, 27(9):1557-1565. |
[22] | AHLBRANDT T S, KLETT T R. Comparison of methods used to estimate conventional undiscovered petroleum resources: World examples[J]. Natural Resources Research, 2005, 14(3):187-209. |
[23] | 宋振响, 徐旭辉, 王保华, 等. 页岩气资源评价方法研究进展与发展方向[J]. 石油与天然气地质, 2020, 41(5):1038-1047. |
[23] | SONG Zhenxiang, XU Xuhui, WANG Baohua, et al. Advances in shale gas resource assessment methods and their future evolvement[J]. Oil & Gas Geology, 2020, 41(5) : 1038-1047. |
[24] | 陈承声, 史树勇, 王云鹏. 基于PetroMod四川盆地长宁地区五峰—龙马溪组优质页岩段吸附模拟研究[J]. 地球化学, 2019, 48(6):602-612. |
[24] | CHEN Chengsheng, SHI Shuyong, WANG Yunpeng. Adsorption simulation based on PetroMod of high-quality shale segment of Wufeng-Longmaxi Formation in Changning Area, Sichuan Basin[J]. Geochimica, 2019, 48(6):602-612. |
[25] | 罗秋霞. 中国东部某些盆地下第三系生油岩演化的数学模拟[J]. 石油实验地质, 1980,(2):37-43. |
[25] | LUO Qiuxia. Mathematical simulation of the evolution of Paleogene source rocks in some basins in eastern China[J]. Petroleum Geology & Experiment, 1980, (2):37-43. |
[26] | 汪本善, 刘德汉, 张丽洁, 等. 渤海湾盆地黄骅拗陷石油演化特征及人工模拟研究[J]. 石油学报, 1980,(1):43-51. |
[26] | WANG Benshan, LIU Dehan, ZHANG Lijie, et al. Ingestigation and simulation experiments on the characteristics of the genesis and evoluation of petroleum in Huanghua depression in bohai bay[J]. Acta Petrolei Sinica, 1980, (1):43-51. |
[27] | 姜生玲, 张金川, 李博, 等. 中国现阶段页岩气资源评价方法分析[J]. 断块油气田, 2017, 24(5):642-646. |
[27] | JIANG Shengling, ZHANG Jinchuan, LI Bo, et al. Analysis of shale gas resources assessment method in China[J]. Fault-Block Oil & Gas Field, 2017, 24(5):642-646. |
[28] | CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11):1921-1938. |
[29] | 张金川, 杨超, 陈前, 等. 中国潜质页岩形成和分布[J]. 地学前缘, 2016, 23(1):74-86. |
[29] | ZHANG Jinchuan, YANG Chao, CHEN Qian, et al. Deposition and distribution of potential shales in China[J]. Earth Science Frontiers, 2016, 23(1):74-86. |
[30] | 王香增,, 高胜利, 高潮. 鄂尔多斯盆地南部中生界陆相页岩气地质特征[J]. 石油勘探与开发, 2014, 41(3):294-304. |
[30] | WANG Xiangzeng, GAO Shengli, GAO Chao. Geological features of Mesozoic continental shale gas in south of Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2014, 41(3):294-304. |
[31] | 赵文智, 贾爱林, 位云生, 等. 中国页岩气勘探开发进展及发展展望[J]. 中国石油勘探, 2020, 25(1):31-44. |
[31] | ZHAO Wenzhi, JIA Ailin, WEI Yunsheng, et al. Progress in shale gas exploration in China and prospects for future development[J]. China Petroleum Exploration, 2020, 25(1):31-44. |
[32] | 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1):1-14. |
[32] | ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1):1-14. |
/
〈 |
|
〉 |