油气藏评价与开发 >
2021 , Vol. 11 >Issue 4: 487 - 496
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2021.04.003
常压页岩气田一体化效益开发及智能化评价
收稿日期: 2021-01-25
网络出版日期: 2021-08-19
基金资助
中国石化科技开发部项目“南川复杂构造带页岩气勘探开发关键技术”(P19017);中国石化科技开发部项目“四川盆地及周缘常压页岩气勘探开发关键技术研究”(P21087-4)
Integrated benefit development and intelligent evaluation of normal pressure shale gas
Received date: 2021-01-25
Online published: 2021-08-19
受多期构造运动影响,南川地区页岩地质条件复杂、资源禀赋变差,难以实现规模效益开发。为积极推动南川地区页岩气效益开发,坚持推行地质工程一体化、全方位全过程优化的开发理念,围绕“研究部署、井网优化、钻井工程和压裂工程”等方面开展综合研究。坚持地下资源充分动用、地面钻前最优的原则确定钻井平台及井网优化部署;以产能“甜点”为核心优化井位设计,同时应用一体化导向技术,实现精准穿层,提升“甜点”钻遇;以改造缝网复杂程度最大化和产能最大化为目标,优化压裂工艺设计,实现页岩气井效益最大化。基于南川地区页岩气产建实施,形成了南川复杂构造带特点下的“研究部署、设计实施和支撑保障”全过程的一体化模式,实现钻井提速、压裂改造提产,推动南川地区页岩气实现效益开发。
王运海 , 任建华 , 陈祖华 , 梅俊伟 , 胡春锋 , 王伟 , 卢比 . 常压页岩气田一体化效益开发及智能化评价[J]. 油气藏评价与开发, 2021 , 11(4) : 487 -496 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.04.003
Due to the multi-stage tectonic movement, the geological conditions of shale in Nanchuan are complex and resource endowment is deteriorating, which makes it difficult to realize the scale economy development. In order to actively promote the beneficial development of Nanchuan shale gas, it insists on the development concept of geological engineering integration and all-around whole-process optimization, and carries out comprehensive research on “research deployment, well pattern optimization, drilling engineering and fracturing engineering” and other aspects. According to the principle of fully utilizing underground resources and optimizing before surface drilling, the optimal deployment of drilling platform and well pattern is determined. The well placement design is optimized with productivity sweet spot as the core, meanwhile, the integrated steering technology is applied to achieve precise penetration and improve sweet spot penetration. Aiming at maximizing the complexity of fracture network and productivity, the fracturing process design is optimized to maximize the benefits of shale gas wells. Based on the production, construction and implementation of shale gas in Nanchuan area, an integrated model of the whole process of “research, deployment, design, implementation and support” has been formed under the characteristics of Nanchuan complex structural belt, which can improve the drilling speed and fracturing production, and promote the beneficial development of shale gas in Nanchuan area.
[1] | 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4):561-574. |
[1] | MA Yongsheng, CAI Xunyu, ZHAO Peirong. China’s shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4):561-574. |
[2] | 马新华, 谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018, 45(1):161-169. |
[2] | MA Xinhua, XIE Jun. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1):161-169. |
[3] | 何贵松, 何希鹏, 高玉巧, 等. 渝东南盆缘转换带金佛斜坡常压页岩气富集模式[J]. 天然气工业, 2020, 40(6):50-60. |
[3] | HE Guisong, HE Xipeng, GAO Yuqiao, et al. Enrichment model of normal-pressure shale gas in the Jinfo slope of the basin-margin transition zone in Southeast Chongqing[J]. Natural Gas Industry, 2020, 40(6):50-60. |
[4] | 何希鹏, 王运海, 王彦祺, 等. 渝东南盆缘转换带常压页岩气勘探实践[J]. 中国石油勘探, 2020, 25(1):126-136. |
[4] | HE Xipeng, WANG Yunhai, WANG Yanqi, et al. Exploration practices of normal-pressure shale gas in the marginal transition zone of the southeast Sichuan Basin[J]. China Petroleum Exploration, 2020, 25(1):126-136. |
[5] | 鲜成钢, 张介辉, 陈欣, 等. 地质力学在地质工程一体化中的应用[J]. 中国石油勘探, 2017, 22(1):75-88. |
[5] | XIAN Chenggang, ZHANG Jiehui, CHEN Xin, et al. Application of geomechanics in geology-engineering integration[J]. China Petroleum Exploration, 2017, 22(1):75-88. |
[6] | 鲜成钢. 页岩气地质工程一体化建模及数值模拟:现状、挑战和机遇[J]. 石油科技论, 2018, 37(5):24-34. |
[6] | XIAN Chenggang. Shale gas geological engineering integrated modeling and numerical simulation: Present conditions, challenges and opportunities[J]. Petroleum Science and Technology Forum, 2018, 37(5):24-34. |
[7] | 胡文瑞. 地质工程一体化是实现复杂油气藏效益勘探开发的必由之路[J]. 中国石油勘探, 2017, 22(1):1-5. |
[7] | HU Wenrui. Geology-engineering integration-a necessary way to realize profitable exploration and development of complex reservoirs[J]. China Petroleum Exploration, 2017, 22(1):1-5. |
[8] | 吴奇, 梁兴, 鲜成钢, 等. 地质—工程一体化高效开发中国南方海相页岩气[J]. 中国石油勘探, 2015, 20(4):1-23. |
[8] | WU Qi, LIANG Xing, XIAN Chenggang, et al. Geoscience to production integration ensures effective and efficient south China marine shale gas development[J]. China Petroleum Exploration, 2015, 20(4):1-23. |
[9] | 谢军, 张浩淼, 佘朝毅, 等. 地质工程一体化在长宁国家级页岩气示范区中的实践[J]. 中国石油勘探, 2017, 22(1):21-28. |
[9] | XIE Jun, ZHANG Haomiao, SHE Chaoyi, et al. Practice of geology-engineering integration in Changning State Shale Gas Demonstration Area[J]. China Petroleum Exploration, 2017, 22(1):21-28. |
[10] | 梁兴, 徐进宾, 刘成, 等. 昭通国家级页岩气示范区水平井地质工程一体化导向技术应用[J]. 中国石油勘探, 2019, 24(2):226-232. |
[10] | LIANG Xing, XU Jinbin, LIU Cheng, et al. Geosteering technology based on geological and engineering integration for horizontal wells in Zhaotong national shale gas demonstration zone[J]. China Petroleum Exploration, 2019, 24(2):226-232. |
[11] | AMBROSE R J, HARTMAN R C, CAMPOS M D, et al. New pore-scale considerations for shale gas in place calculations[C]// Paper SPE-131772-MS presented at the SPE Unconventional Gas Conference, 23-25 February, 2010, Pittsburgh, Pennsylvania, USA. |
[12] | PRISE G J, STEWART D R, BIRD T M, et al. Successful completion operations on ravenspurn north development[C]// Paper SPE-26744-MS presented at the SPE Offshore Europe, 7-10 September, 1993, Aberdeen, United Kingdom. |
[13] | 潘仁芳, 龚琴, 鄢杰, 等. 页岩气藏“甜点”构成要素及富气特征分析——以四川盆地长宁地区龙马溪组为例[J]. 天然气工业, 2016, 36(3):7-13. |
[13] | PAN Renfang, GONG Qin, YAN Jie, et al. Elements and gas enrichment laws of sweet spots in shale gas reservoir: A case study of the Longmaxi Fm in Changning Block, Sichuan Basin[J]. Natural Gas Industry, 2016, 36(3):7-13. |
[14] | 方栋梁, 孟志勇. 页岩气富集高产主控因素分析——以四川盆地涪陵地区五峰组—龙马溪组一段页岩为例[J]. 石油实验地质, 2020, 42(1):37-41. |
[14] | FANG Dongliang, MENG Zhiyong . Main controlling factors of shale gas enrichment and high yield: A case study of Wufeng-Longmaxi formations in Fuling area, Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(1):37-41. |
[15] | 王志伟, 赵永刚, 阴钰毅, 等. 页岩气“甜点”地震预测研究[J]. 石油地质与工程, 2020, 34(1):37-41. |
[15] | WANG Zhiwei, Zhao Yonggang, Yin Yuyi, et al. Seismic prediction of “sweet spots” for shale gas[J]. Petroleum Geology & Engineering, 2020, 34(1):37-41. |
[16] | 邹才能, 杨智, 张国生, 等. 常规—非常规油气“有序聚集”理论认识及实践意义[J]. 石油勘探与开发, 2014, 41(1):14-27. |
[16] | ZOU Caineng, YANG Zhi, ZHANG Guosheng, et al. Conventional and unconventional petroleum “orderly accumulation”: Concept and practical significance[J]. Petroleum Exploration and Development, 2014, 41(1):14-27. |
[17] | 廖东良. 页岩气层双“甜点”评价方法及工程应用展望[J]. 石油钻探技术, 2020, 48(4):94-99. |
[17] | LIAO Dongliang. Evaluation methods and engineering application of the feasibility of “double sweet spots” in shale gas reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4):94-99. |
[18] | 苏超, 吴亮, 张卓, 等. 页岩气返排测试过程中防砂控砂技术浅析[J]. 非常规油气, 2018, 5(1):76-79. |
[18] | SU Chao, WU Liang, ZHANG Zhuo, et al. Elementary analysis for sand prevention and sand control technology in the process of shale gas flow back well test[J]. Unconventional Oil & Gas, 2018, 5(1):76-79. |
[19] | 刘雨舟. 浅析页岩气地面工程技术现状及发展趋势[J]. 石油与天然气化工, 2019, 48(3):66-71. |
[19] | LIU Yuzhou. Analysis on present status and development trend of shale gas ground engineering technology[J]. Chemical Engineering of Oil and Gas, 2019, 48(3):66-71. |
[20] | 刘合, 孟思炜, 苏健, 等. 对中国页岩气压裂工程技术发展和工程管理的思考与建议[J]. 天然气工业, 2019, 39(4):1-7. |
[20] | LIU He, MENG Siwei, SU Jian, et al. Reflections and suggestions on the development and engineering management of shale gas fracturing technology in China[J]. Natural Gas Industry, 2019, 39(4):1-7. |
[21] | 伍葳, 吴坷, 文春宇, 等. 长宁页岩气井水平段钻井参数强化对比评价[J]. 非常规油气, 2019, 6(5):80-84. |
[21] | WU Wei, WU Ke, WEN Chunyu, et al. The comparison analysis of drilling parameter optimizing practice in the horizontal section of two specific shale gas wells in Changning area[J]. Unconventional Oil & Gas, 2019, 6(5):80-84. |
/
〈 | 〉 |