页岩油气勘探开发

井约束旅行时恒定层析成像技术在南川地区的应用

  • 杨帆 ,
  • 蓝加达 ,
  • 孟庆利 ,
  • 薛野 ,
  • 李彦婧 ,
  • 赵苏城 ,
  • 俞若水 ,
  • 纪明 ,
  • 姜岸 ,
  • 任俊兴
展开
  • 中国石化华东油气分公司勘探开发研究院,江苏 南京 210019
杨帆(1987—),男,助理研究员,从事物探地震资料处理及方法研究工作。地址:南京市建邺区江东中路375号金融城9号楼,邮政编码:210019。E-mail: 672513900@qq.com

收稿日期: 2020-11-19

  网络出版日期: 2021-08-19

基金资助

国家科技重大专项“彭水地区常压页岩气勘探开发示范工程”(2016ZX05061);中国石化科技部项目“常压页岩气地球物理评价技术研究”(P21087-3);中国石化华东油气分公司科研项目“阳春沟地区高陡构造成像研究”(HDF/KJ2021-24)

Application of well-constrained travel time preserving tomography technology in Nanchuan area

  • Fan YANG ,
  • Jiada LAN ,
  • Qingli MENG ,
  • Ye XUE ,
  • Yanjing LI ,
  • Sucheng ZHAO ,
  • Ruoshui YU ,
  • Ming JI ,
  • An JIANG ,
  • Junxing REN
Expand
  • Research Institute of Exploration and Development, Sinopec East China Oil and Gas Company, Nanjing, Jiangsu 210019, China

Received date: 2020-11-19

  Online published: 2021-08-19

摘要

川东南地区地形高差大,地表条件复杂,同时地层倾角大,地下条件复杂,精确成像难。该地区前期处理资料在页岩气勘探开发支撑中存在井震波组产状不一致、断层假象及井震预测误差的问题。针对该地区存在的问题,研究了井控各向异性叠前深度偏移方法,并应用于上述三维工区,通过提高速度模型精度从而提高复杂褶皱区的地震成像精度,对指导后期的井位部署及水平井导向,提高优质页岩钻遇率起到重要的作用。从各向同性和各向异性两个方面对偏移速度模型精度进行了精细刻画,通过高精度网格层析速度建模、井约束旅行时恒定层析成像技术(TPT)、TTI(具有倾斜对称轴的横向各向同性介质)各向异性成像技术的深入研究及实践,逐步健全了川东南地区地震精确成像的关键技术系列,提高了井震产状吻合度,缩小了井震深度预测误差,消除了地震剖面的断层假象,为后续页岩气勘探开发部署提供了重要技术支撑。

本文引用格式

杨帆 , 蓝加达 , 孟庆利 , 薛野 , 李彦婧 , 赵苏城 , 俞若水 , 纪明 , 姜岸 , 任俊兴 . 井约束旅行时恒定层析成像技术在南川地区的应用[J]. 油气藏评价与开发, 2021 , 11(4) : 514 -520 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.04.006

Abstract

The southeastern Sichuan region has large elevation differences, complex surface conditions, large stratum dip, and complex conditions underground, so that the accurate imaging is difficult. In the support of shale gas exploration and development, there are problems of inconsistent well seismic wave group occurrence, false faults and well seismic prediction errors for the pre-processed data in this area. Aiming at these problems, the well-control anisotropic pre-stack depth migration method is proposed and applied to the above three-dimensional work area. By improving the accuracy of the velocity model, the seismic imaging accuracy of the complex fold area is improved, and it plays an important role in guiding the later well position, and improving the high-quality shale drilling rate. In this paper, the accuracy of the migration velocity model is finely characterized from two aspects: isotropy and anisotropy. Through the deep research and practice of high-precision grid tomography velocity modeling, travel(TPT)and TTI(transverse isotropic media with axial inclined symmetry), the key technology series of seismic precision imaging in southeast Sichuan is gradually improved to enhance the well seismic yield consistency, reduce the well earthquake depth prediction error, eliminate the fault illusion of seismic profile, and provide important technical support for subsequent exploration and development of shale gas deployment.

参考文献

[1] THOMSEN L. Weak slastic anisotropy[J]. Geophysics, 1986, 51:1954-1966.
[2] TSVANKIN T. Nonhyperbolic reflecton moveout in anisotropic media[J]. Geophysics, 1994, 59:1290-1304.
[3] 李录明, 罗省贤, 赵波. 初至波表层模型层析反演[J]. 石油地球物理勘探, 2000, 35(5):559-564.
[3] LI Luming, LUO Xingxian, ZHAO Bo. Tomographic inversion of first break in surface model[J]. Oil Geophysical Prospecting, 2000, 35(5):559-564.
[4] 王咸彬. TTI各向异性逆时偏移技术及应用[J]. 石油物探, 2017, 56(4):534-542.
[4] WANG Xianbin. Anisotropic reverse time migration technique in TTI media and its application[J]. Geophysical Prospecting for Petroleum, 2017, 56(4):534-542.
[5] 李慧, 成德安, 金婧. 网格层析成像速度建模方法与应用[J]. 石油地球物理勘探, 2013, 48(S1):12-16.
[5] LI Hui, CHENG Dean, JIN Jing. Velocity model building based on grid tomography[J]. Oil Geophysical Prospecting, 2013, 48(S1):12-16.
[6] 黄兆辉, 刘洪雷, 唐必锐, 等. 高陡构造地区勘探失误分析及速度建模改进方法——以云安10井为例[J]. 石油物探, 2008, 47(3):301-305.
[6] HUANG Zhaohui, LIU Honglei, TANG Birui, et al. Prospecting defect analysis and improving technology for velocity modeling in high-steep structure area: case study of Yun’an10 well[J]. Geophysical Prospecting for Petroleum, 2008, 47(3):301-305.
[7] 何希鹏, 何贵松, 高玉巧, 等. 渝东南盆缘转换带常压页岩气地质特征及富集高产规律[J]. 天然气工业, 2018, 38(12):1-14.
[7] HE Xipeng, HE Guisong, GAO Yuqiao, et al. Geological characteristics and enrichment laws of normal-pressure shale gas in the basin-margin transition zone of SE Chongqing[J]. Natural Gas Industry, 2018, 38(12):1-14.
[8] 马德堂, 朱光明. 横向各向同性介质中的初至波旅行时计算[J]. 石油地球物理勘探, 2006, 41(1):26-31.
[8] Ma Detang, Zhu Guangming. Computation of traveltimes of seismic first breaks in transversely isotropic medium[J]. Oil Geophysical Prospecting, 2006, 41(1):26-31.
[9] 李源, 刘伟, 刘微, 等. 各向异性全速度建模技术在山地地震成像中的应用[J]. 石油物探, 2015, 54(2):157-164.
[9] LI Yuan, LIU Wei, LIU Wei, et al. Application of anisotropic full velocity modeling in the mountainous seismic imaging[J]. Geophysical Prospecting for Petroleum, 2015, 54(2):157-164.
[10] 白海军, 孙赞东, 王学军. 基于波前构建法的TTI介质射线追踪[J]. 石油地球物理勘探, 2011, 46(S1):1-6.
[10] BAI Haijun, SUN Zandong, WANG Xuejun. Raytracing in TTI media using wavefront construction[J]. Oil Geophysical Prospecting, 2011, 46(S1):1-6.
[11] 周巍, 王鹏燕, 杨勤勇, 等. 各向异性克希霍夫叠前深度偏移[J]. 石油物探, 2012, 51(5):476-485.
[11] ZHOU Wei, WANG Pengyan, YANG Qinyong, et al. Research on Anisotropic Kirchhoff pre-stack depth migration[J]. Geophysical Prospecting for Petroleum, 2012, 51(5):476-485.
[12] 裴云龙, 王立歆, 邬达理, 等. 井控各向异性速度建模技术在YKL地区的应用[J]. 石油物探, 2017, 56(3):390-399.
[12] PEI Yunlong, WANG Lixin, WU Dali, et al. The application of well-controlled anisotropy velocity modeling in YKL region[J]. Geophysical Prospecting for Petroleum, 2017, 56(3):390-399.
[13] 秦海旭, 吴国忱. TTI介质弹性波随机边界逆时偏移的实现[J]. 石油物探, 2014, 53(5):570-578.
[13] QIN Haixu, WU Guochen. The implementation of elastic reverse time migration in TTI media based on random boundary[J]. Geophysical Prospecting for Petroleum, 2014, 53(5):570-578.
[14] 杨勤勇, 郭恺, 李博, 等. 各向异性地震成像技术及其在页岩气勘探中的应用[J]. 石油物探, 2019, 58(6):882-889.
[14] YANG Qinyong, GUO Kai, LI Bo, et al. Application of TTI anisotropic seismic imaging in shale gas exploration[J]. Geophysical Prospecting for Petroleum, 2019, 58(6):882-889.
[15] 查树贵, 刘利平, 廖朋, 等. 水平井地震地质导向技术及其在涪陵页岩气田的应用[J]. 石油物探, 2018, 57(3):369-377.
[15] ZHA Shugui, LIU Liping, LIAO Peng, et al. Seismic geo-steering technology of horizontal well and its application in Fuling shale gas field[J]. Geophysical Prospecting for Petroleum, 2018, 57(3):369-377.
[16] JONES I F. 3-D prestack depth migration and velocity model building[J]. Geophysics, 1998, 63(4):1177-1183.
[17] 刘玉柱, 王光银, 董良国, 等. VTI介质多参数联合走时层析成像方法[J]. 地球物理学报, 2014, 57(10):3402-3410.
[17] LIU Yuzhu, WANG Guangyin, DONG Liangguo, et al. Joint inversion of VTI parameters using nonlinear traveltime tomography[J]. Chinese Journal Of Geophysics, 2014, 57(10):3402-3410.
[18] 戴海涛, 成剑冰, 王红博, 等. 复杂地表浅层速度建模技术研究及应用[J]. 石油物探, 2020, 59(3):336-343.
[18] DAI Haitao, CHENG Jianbing, WANG Hongbo, et al. A shallow velocity modeling technique for complex surfaces[J]. Geophysical Prospecting for Petroleum, 2020, 59(3):336-343.
[19] 张在金, 陈可洋, 范兴才, 等. 井控与构造约束条件下的网格层析速度建模技术及应用[J]. 石油物探, 2020, 59(2):208-217.
[19] ZHANG Zaijin, CHEN Keyang, FAN Xingcai, et al. Seismic wave velocity modelling through grid tomography inversion constrained by well logging and structural modeling[J]. Geophysical Prospecting for Petroleum, 2020, 59(2):208-217.
[20] 姚晓龙, 张永升, 齐鹏, 等. 面向复杂山前带的平滑地表TTI各向异性速度建模[J]. 石油物探, 2020, 59(4):539-550.
[20] YAO Xiaolong, ZHANG Yongsheng, QI Peng, et al. TTI anisotropic velocity modeling based on a smoothed surface for a piedmont zone[J]. Geophysical Prospecting for Petroleum, 2020, 59(4):539-550.
[21] 聂法健. 基于地震层位约束的速度建模技术在普光气田的应用[J]. 非常规油气, 2017, 4(2):1-7.
[21] NIE Fajian. Application of velocity modeling technology based on seismic horizon constraint in Puguang Gas Field[J]. Unconventional Oil and Gas, 2017, 4(2):1-7.
[22] HE Y, CAI J. Anisotropic tomography for TTI and VTI media [C]// Paper SEG-2011-3923 presented at the 2011 SEG Annual Meeting, San Antonio, Texas, September 2011.
[23] ZHOU H B, PHAM D, GRAY S, et al. Tomographic velocity analysis in strong anisotropic TTI media[J]. Expanded Abstracts of 74th Annual Internat SEG Mtg, 2004: 2347-2351.
文章导航

/