油气藏评价与开发 >
2021 , Vol. 11 >Issue 4: 536 - 541
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2021.04.009
吉木萨尔页岩油“下甜点”低成本技术
收稿日期: 2021-05-07
网络出版日期: 2021-08-19
基金资助
中国石油科学研究与技术开发项目“页岩油高效压裂改造技术与应用”(2019E-2606)
Low-cost technology of Jimsar shale oil: A case study of lower “sweet spot”
Received date: 2021-05-07
Online published: 2021-08-19
吉木萨尔二叠系芦草沟组陆相页岩油藏储量丰富,纵向上存在上、下2个“甜点”富集段,随着开发进程的推进,“下甜点”逐渐成为开发主力层位。“下甜点”具有埋深大、非均质性强等特征,开发难度较大。伴随市场环境压力的影响,急需对工艺技术优化实现页岩油低成本开发。基于吉木萨尔页岩油“下甜点”地质特征,应用数值模拟、室内实验、裂缝监测等方法,对簇间距、滑溜水携砂性能、支撑剂导流能力等方面进行了研究,并开展了密切割、暂堵压裂,石英砂替代,全滑溜水加砂等一系列低成本工艺现场试验。现场应用效果显示:综合采用低成本压裂改造技术,在产量相当的基础上综合压裂成本可降低30 %以上,为吉木萨尔页岩油“下甜点”后续高效开发提供借鉴。
夏赟 , 张丽萍 , 褚浩元 , 李佳琦 , 马少云 . 吉木萨尔页岩油“下甜点”低成本技术[J]. 油气藏评价与开发, 2021 , 11(4) : 536 -541 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.04.009
The Permian Lucaogou Formation in Jimsar is rich in continental shale oil reserves. There are two “sweet spot” developed in the vertical direction. As the development progresses advances, the lower “sweet spot” becomes the main development layer. It has the characteristics of large depth and strong heterogeneity, which makes the development difficult. With the impact of market environmental pressure, it is urgent to optimize the stimulation technology to realize the low-cost development of shale oil. Based on the geological characteristics, the methods of numerical simulation, experiments, and fracture monitoring are used to study the cluster spacing, sand-carrying performance of slick water, conductivity of proppant and so on. Then, a series of low-cost tests such as intensive stage, temporary plugging fracturing, quartz sand replacement, and slick water sand injection have been carried out. The application effect showed that the comprehensively use of low-cost stimulation technology can reduce the cost by at least 30 %, meanwhile, maintain the output. It provides a reference for the subsequent development for Jimsar shale oil.
[1] | 霍进, 何吉祥, 高阳, 等. 吉木萨尔凹陷芦草沟组页岩油开发难点及对策[J]. 新疆石油地质, 2019, 40(4):379-388. |
[1] | HUO Jin, HE Jixiang, GAO Yang, et al. Difficulties and countermeasures of shale oil development in Lucaogou Formation of Jimsar Sag[J]. Xinjiang Petroleum Geology, 2019, 40(4):379-388. |
[2] | 何登发, 李德生, 童晓光, 等. 中国沉积盆地油气立体综合勘探论[J]. 石油与天然气地质, 2021, 42(2):265-284. |
[2] | HE Dengfa, LI Desheng, TONG Xiaoguang, et al. Integrated 3D hydrocarbon exploration in sedimentary basins of China[J]. Oil & Gas Geology, 2021, 42(2):265-284. |
[3] | 王敏生, 光新军, 耿黎东. 页岩油高效开发钻井完井关键技术及发展方向[J]. 石油钻探技术, 2019, 47(5):1-10. |
[3] | WANG Minsheng, GUANG Xinjun, GENG Lidong. Key drilling/completion technologies and development trends in the efficient development of shale oil[J]. Petroleum Drilling Techniques, 2019, 47(5):1-10. |
[4] | HOU B, ZHANG R X, ZENG Y J, et al. Analysis of hydraulic fracture initiation and propagation in deep shale formation with high horizontal stress difference[J]. Journal of Petroleum Science and Engineering, 2018, 170:231-243. |
[5] | 李二庭, 王剑, 李际, 等. 源储一体烃源岩精确评价——以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J]. 石油实验地质, 2021, 43(2):335-342. |
[5] | LI Erting, WANG Jian, LI Ji, et al. Accurate evaluation of source rocks in source-reservoir integration: A case study of source rocks in Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2021, 43(2):335-342. |
[6] | 赵文智, 朱如凯, 胡素云, 等. 陆相富有机质页岩与泥岩的成藏差异及其在页岩油评价中的意义[J]. 石油勘探与开发, 2020(6):1-11. |
[6] | ZHAO Wenzhi, ZHU Rukai, HU Suyun, et al. Accumulation contribution differences between lacustrine organic-rich shales and mudstones and their significance in shale oil evaluation[J]. Petroleum Exploration and Development, 2020(6):1-11. |
[7] | 胥云, 雷群, 陈铭, 等. 体积改造技术理论研究进展与发展方向[J]. 石油勘探与开发, 2018, 45(5):874-887. |
[7] | XU Yun, LEI Qun, CHEN Ming, et al. Progress and development of volume stimulation techniques[J]. Petroleum Exploration and Development, 2018, 45(5):874-887. |
[8] | 张士诚, 李四海, 邹雨时, 等. 页岩油水平井多段压裂裂缝高度扩展试验[J]. 中国石油大学学报(自然科学版), 2021, 45(1):77-86. |
[8] | ZHANG Shicheng, LI Sihai, ZOU Yushi, et al. Experimental study on fracture height propagation during multi-stage fracturing of horizontal wells in shale oil reservoirs[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(1):77-86. |
[9] | FISHER M K, WRIGHT C A, DAVIDSON B M, et al. Integrating fracture mapping technologies to improve stimulations in the Barnett Shale[J]. SPE Production & Facilities, 2005, 20(2):85-93. |
[10] | 刘乃震, 张兆鹏, 邹雨时, 等. 致密砂岩水平井多段压裂裂缝扩展规律[J]. 石油勘探与开发, 2018, 45(6):1059-1068. |
[10] | LIU Naizhen, ZHANG Zhaopeng, ZOU Yushi, et al. Propagation law of hydraulic fractures during multistaged horizontal well fracturing in a tight reservoir[J]. Petroleum Exploration and Development, 2018, 45(6):1059-1068. |
[11] | 张广清, 周大伟, 窦金明, 等. 天然裂缝群与地应力差作用下水力裂缝扩展试验[J]. 中国石油大学学报(自然科学版), 2019, 43(5):157-162. |
[11] | ZHANG Guangqing, ZHOU Dawei, DOU Jinming, et al. Experiments on hydraulic fracture propagation underreaction of natural fractures and crustal stress difference[J]. Journal of China University of Petroleum(Edition of Natural Science), 2019, 43(5):157-162. |
[12] | MILLER C K, WATERS G A, RYLANDER E I. Evaluation of production log data from horizontal wells drilled in organic shales[C]// Paper SPE-144326-MS presented at the North American Unconventional Gas Conference and Exhibition, June 14-16, 2011. |
[13] | ZHU D, HILL D, ZHANG S. Using temperature measurements from production logging/downhole sensors to diagnose multistage fractured well flow profile[D]. Texas: Texas A&M University, 2018. |
[14] | 严永新, 张永华, 陈祥, 等. 微地震技术在裂缝监测中的应用研究[J]. 地学前缘, 2013, 20(3):270-274. |
[14] | YAN Yongxin, ZHANG Yonghua, CHEN Xiang, et al. The application of micro-seismic technology in fracture monitoring[J]. Earth Science Frontiers, 2013, 20(3):270-274. |
[15] | 周福建, 苏航, 梁星原, 等. 致密油储集层高效缝网改造与提高采收率一体化技术[J]. 石油勘探与开发, 2019, 46(5):1007-1014. |
[15] | ZHOU Fujian, SU Hang, LIANG Xingyuan, et al. Integrated hydraulic fracturing techniques to enhance oil recovery from tight rocks[J]. Petroleum Exploration and Development, 2019, 46(5):1007-1014. |
[16] | 李德旗, 朱炬辉, 张俊成, 等. 页岩气水平井选择性分簇压裂工艺先导性试验——以昭通国家级页岩气示范区为例[J]. 天然气工业, 2021, 41(S1):133-137. |
[16] | LI Deqi, ZHU Juhui, ZHANG Juncheng, et al. Pilot test of selective cluster fracturing technology for shale gas horizontal wells: A case study on Zhaotong National Shale Gas Demonstration Area[J]. Natural Gas Industry, 2021, 41(S1):133-137. |
[17] | 慕立俊, 赵振峰, 李宪文, 等. 鄂尔多斯盆地页岩油水平井细切割体积压裂技术[J]. 石油与天然气地质, 2019, 40(3):626-635. |
[17] | MU Lijun, ZHAO Zhenfeng, LI Xianwen, et al. Fracturing technology of stimulated reservoir volume with subdivision cutting for shale oil horizontal wells in Ordos Basin[J]. Oil & Gas Geology, 2019, 40(3):626-635. |
[18] | SOMANCHI K, BREWER J, REYNOLDS A. Extreme limited entry design improves distribution efficiency in plug-n-perf completions: Insights from fiber-optic diagnostics[C]// Paper SPE-184834-MS presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition, January 24-26, 2017. |
[19] | MALHOTRA S, LEHMAN E R, SHARMA M M. Proppant placement using alternate-slug fracturing[J]. SPE Journal, 2014, 19(5):974-985. |
[20] | 任岚, 林辰, 林然, 等. 复杂裂缝中低密度支撑剂铺置数值模拟[J/OL]. 大庆石油地质与开发(2021-02-08)[2021-06-22]. https://doi.org/10.19597/J.ISSN.1000-3754.202009044. |
[20] | REN Lan, LIN Chen, LIN Ran, et al. Numerical simulation of the low-density proppant placement in complex frames[J/OL]. Petroleum Geology & Oilfield Development in Daqing(2021-02-08)[2021-06-22]. https://doi.org/10.19597/J.ISSN.1000-3754.202009044. |
[21] | 狄伟. 支撑剂在裂缝中的运移规律及铺置特征[J]. 断块油气田, 2019, 26(3):355-359. |
[21] | DI Wei. Migration law and placement characteristics of proppant in fractures[J]. Fault-Block Oil& Gas Field, 2019, 26(3):355-359. |
[22] | 王丹. 水力压裂支撑剂技术及面临的挑战[J]. 中外能源, 2018, 23(9):24-30. |
[22] | WANG Dan. The challenges and development of hydraulic fracturing[J]. Sino-Global Energy, 2018, 23(9):24-30. |
[23] | RAMURTHY M, BARREE R D, KUNDERT D P, et al. Surface-area vs. conductivity-type fracture treatments in shale reservoirs[J]. SPE Production & Operations, 2011, 26(4):357-367. |
[24] | MCGUIRE W J, SIKORA V J. The effect of vertical fractures on well productivity[J]. Journal of Petroleum Technology, 1960, 12(10):72-74. |
/
〈 |
|
〉 |