页岩油气勘探开发

页岩油开发初期产能控制因素分析——以长庆油田里151区为例

  • 卫嘉鑫 ,
  • 张妍 ,
  • 尚教辉 ,
  • 吕娜 ,
  • 刘文超 ,
  • 王恒恺 ,
  • 马福建 ,
  • 张启涛
展开
  • 1.中国石油长庆油田分公司第二采油厂,甘肃 庆城 745100
    2.中国石油长庆油田分公司第二采油厂,甘肃 华池745600
    3.北京科技大学土木与资源工程学院,北京 100083
    4.中国矿业大学(北京)深部岩土力学与地下工程国家重点实验室,北京 100083
    5.内蒙古建兴斯科科技有限公司,内蒙古 乌兰察布012100
卫嘉鑫(1982—),男,本科,工程师,主要从事长庆油田页岩油开发技术管理工作。地址:甘肃省庆阳市庆城县第二采油厂地质研究所,邮政编码:745100。E-mail: weijiaxin_cq@petrochina.com.cn

收稿日期: 2021-01-18

  网络出版日期: 2021-08-19

基金资助

长庆油田“长7页岩油国家级百万吨示范区建设”专项(CSSO-180928)

Principal factor analysis on initial productivity in shale oil development: A case study of Block Li-151 in Changqing Oilfield

  • Jiaxin WEI ,
  • Yan ZHANG ,
  • Jiaohui SHANG ,
  • Na LYU ,
  • Wenchao LIU ,
  • Hengkai WANG ,
  • Fujian MA ,
  • Qitao ZHANG
Expand
  • 1. No.2 Oil Production Plant, Changqing Oilfield Company, Qingcheng, Gansu 745100, China
    2. No.2 Oil Production Plant, Changqing Oilfield Company, Huachi, Gansu 745600, China
    3. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
    4. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
    5. Inner Mongolia Jianxingsco Technology Co., Ltd, Wulanchabu, Inner Mongolia 012100, China

Received date: 2021-01-18

  Online published: 2021-08-19

摘要

为了明确页岩油压裂焖井开发初期的产能控制因素,应用层次聚类分析与主成分分析相结合的综合数据分析方法,对里151区生产井的储层静态参数、压裂施工参数以及产油量数据进行定量分析。首先应用层次聚类方法将生产井划分为A类井与B类井,再利用主成分分析方法对不同类别生产井数据进行产能控制因素分析。分析结果表明:焖井时间小于125 d时,焖井施工可以有效降低产量递减率,大于125 d时,焖井效果较差;A类井产油量递减率与压裂入地液量呈高度负相关,同时动液面对产油量及其递减率影响显著;B类井产油量递减率控制因素主要为动液面和基质孔隙度;B类井产油量控制因素为压裂段数。因此,在对里151区块页岩油进行优化生产时,应考虑A类井与B类井生产控制因素上的差异,充分利用不同井型下控制因素分析结果,为该区块页岩油后续开发提供合理参考。

本文引用格式

卫嘉鑫 , 张妍 , 尚教辉 , 吕娜 , 刘文超 , 王恒恺 , 马福建 , 张启涛 . 页岩油开发初期产能控制因素分析——以长庆油田里151区为例[J]. 油气藏评价与开发, 2021 , 11(4) : 550 -558 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.04.011

Abstract

In order to clarify the main principal factors that affect the initial productivity during the development of shale oil reservoirs, a comprehensive data analysis method involved both the hierarchical cluster analysis and the principal component analysis in data statistics is presented; and then the deta of the static formation parameters, fracturing operation parameters and the oil productivity of 51 wells in Block Li-151 are analyzed quantitatively. At first, the wells in the block are divided automatically into two types, Type A and Type B, by the hierarchical cluster analysis method. Then, a principal component analysis method is used to analyze the principal productivity factors for different types of wells. Analysis results show that, when the well shut-in time is less than 125 days, the oil production decline rate can be reduced effectively by the well shut-in measures; however, when it is greater than 125 days, the effect of well shut-in measures on oil production decline rate becomes negative. The production decline rate of Type A wells is highly negative with the amount of injected fracturing water; the main principal factors for the production decline rate of Type B wells are the moving liquid level and the porosity of shale matrix. The principal factors for the production rate of Type B wells are the number of fracturing sections. All in all, for the production optimization of shale oil development in Block Li-151, the differences of principal production factors between Type A wells and Type B wells should be considered and the different analysis results of the principal factors that affect the initial shale oil productivity under different well types should be fully utilized. Some guidance can be provided specifically for the formulation of a reasonable shale oil efficient development plan.

参考文献

[1] 付锁堂, 姚泾利, 李士祥, 等. 鄂尔多斯盆地中生界延长组陆相页岩油富集特征与资源潜力[J]. 石油实验地质, 2020, 42(5):698-710.
[1] FU Suotang, YAO Jingli, LI Shixiang, et al. Enrichment characteristics and resource potential of continental shale oil in Mesozoic Yanchang Formation, Ordos Basin[J]. Petroleum Geology & Experiment, 2020, 42(5):698-710.
[2] YANG Y F, WANG K, ZHANG L, et al. Pore-scale simulation of shale oil flow based on pore network model[J]. Fuel, 2019, 251(6):683-692.
[3] 雷浩, 何建华, 胡振国. 潜江凹陷页岩油藏渗流特征物理模拟及影响因素分析[J]. 特种油气藏, 2019, 26(3):94-98.
[3] LEI Hao, HE Jianhua, HU Zhenguo. Physical simulation and influencing factor analysis of the flow characteristics in the shale oil reservoir of Qianjiang depression[J]. Special Oil & Gas Reservoirs, 2019, 26(3):94-98.
[4] 李世臻, 刘卫彬, 王丹丹, 等. 中美陆相页岩油地质条件对比[J]. 地质论评, 2017, 63(S1):39-40.
[4] LI Shizhen, LIU Weibin, WANG Dandan, et al. Continental shale oil geological conditions of China and the United States[J]. Geological Review, 2017, 63(S1):39-40.
[5] 付茜. 中国页岩油勘探开发现状、挑战及前景[J]. 石油钻采工艺, 2015, 37(4):58-62.
[5] FU Qian. The status, challenge and prospect of shale oil exploration and development in China[J]. Oil Drilling & Production Technology, 2015, 37(4):58-62.
[6] 杨跃明, 黄东. 四川盆地侏罗系湖相页岩油气地质特征及勘探开发新认识[J]. 天然气工业, 2019, 39(6):22-33.
[6] YANG Yueming, HUANG Dong. Geological characteristics and new understandings of exploration and development of Jurassic lacustrine shale oil and gas in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(6):22-33.
[7] 朱彤. 四川盆地陆相页岩油气富集主控因素及类型[J]. 石油实验地质, 2020, 42(3),345-354.
[7] ZHU Tong. Main controlling factors and types of continental shale oil and gas enrichment in Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(3):345-354.
[8] 黎茂稳, 金之钧, 董明哲, 等. 陆相页岩形成演化与页岩油富集机理研究进展[J]. 石油实验地质, 2020, 42(4):489-505.
[8] LI Maowen, JIN Zhijun, DONG Mingzhe, et al. Advances in the basic study of lacustrine shale evolution and shale oil accumulation[J]. Petroleum Geology & Experiment, 2020, 42(4):489-505.
[9] LIU W C, ZHANG Q T, ZHU W Y. Numerical simulation of multi-stage fractured horizontal well in low-permeable oil reservoir with threshold pressure gradient with moving boundary[J]. Journal of Petroleum Science and Engineering, 2019, 178:1112-1127.
[10] ZHANG Q T, ZHU W Y, LIU W C, et al. Numerical simulation of fractured vertical well in low-permeable oil reservoir with proppant distribution in hydraulic fracture[J]. Journal of Petroleum Science and Engineering, 2020, 195:107587.
[11] 霍进, 支东明, 郑孟林, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油藏特征与形成主控因素[J]. 石油实验地质, 2020, 42(4):506-512.
[11] HUO Jin, ZHI Dongming, ZHENG Menglin, et al. Characteristics and main controls of shale oil reservoirs in Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2020, 42(4):506-512.
[12] YANG L, ZHANG X H, ZHOU T, et al. The effects of ions diffusion on imbibition oil recovery in salt-rich shale oil reservoirs[J]. Journal of Geophysics and Engineering, 2019, 16(3):525-540.
[13] ZANG Y J, GE H K, SHEN Y H, et al. Evaluating the potential for oil recovery by imbibition and time-delay effect in tight reservoirs during shut-in[J]. Journal of Petroleum Science and Engineering, 2020, 184(2):1-8.
[14] 江昀, 许国庆, 石阳, 等. 致密岩心带压渗吸规律实验研究[J]. 石油实验地质, 2021, 43(1):144-153.
[14] JIANG Yun, XU Guoqing, SHI Yang, et al. Forced imbibition in tight sandstone cores[J]. Petroleum Geology & Experiment, 2021, 43(1):144-153.
[15] 马莉, 张驰, 刘敦卿, 等. 涪陵页岩气田压裂后焖井工艺适应性初探[J]. 特种油气藏. 2019, 26(1):147-151.
[15] MA Li, ZHANG Chi, LIU Dunqing, et al. Preliminary study on the well-soaking adaptability after fracturing in Fulling shale gasfield[J]. Special Oil & Gas Reservoirs, 2019, 26(1):147-151.
[16] MA X H, LI X Z, LIANG F, et al. Dominating factors on well productivity and development strategies optimization in Weiyuan shale gas play, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(3):594-602.
[17] KIM G, LEE H, CHEN Z H, et al. Effect of reservoir characteristics on the productivity and production forecasting of the Montney shale gas in Canada[J]. Journal of Petroleum Science and Engineering, 2019, 182(1):106276.
[18] 汤志, 镇国钧, 陈兴炳, 等. 昭通黄金坝YS108区块页岩气产能主控因素分析[J]. 新疆石油天然气, 2018, 14(3):58-62.
[18] TANG Zhi, ZHEN Guojun, CHEN Xingbing, et al. Analysis of master factor of shale gas production in Huangjinbays108 Block in Zhaotong City[J]. Xinjiang Oil & Gas, 2018, 14(3):58-62.
[19] 马文礼, 李治平, 高闯, 等. 页岩气井初期产能主控因素“Pearson-MIC”分析方法[J]. 中国科技论文, 2018, 13(15):1765-1771.
[19] MA Wenli, LI Zhiping, GAO Chuang, et al. “Pearson-MIC” analysis method for the initial production key controlling factors of shale gas wells[J]. China Sciencepaper, 2018, 13(15):1765-1771.
[20] 郭建成, 林伯韬, 向建华, 等. 四川盆地龙马溪组页岩压后返排率及产能影响因素分析[J]. 石油科学通报, 2019, 4(3):273-287.
[20] GUO Jiancheng, LIN Botao, XIANG Jianhua, et al. Study of factors affecting the flowback ratio and productive capacity of Longmaxi Formation shale in the Sichuan basin after fracturing[J]. Petroleum Science Bulletin, 2019, 4(3):273-287.
[21] REVELLE W. Hierarchical cluster analysis and the internal structure of tests[J]. Multivariate Behavioral Research, 1979, 14(1):57-74.
[22] KARAMIZADEH S, ABDULLAH S M, MANAF A A, et al. An overview of principal component analysis[J]. Journal of Signal and Information Processing, 2013, 4(3B):173.
[23] 檀朝东, 贺甲元, 周彤, 等. 基于PCA-BNN的页岩气压裂施工参数优化[J]. 西南石油大学学报(自然科学版), 2020, 42(6):56-62.
[23] SHAN Chaodong, HE Jiayuan, ZHOU Tong, et al. A Study on the optimization of fracturing operation parameters based on PCA-CNN[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(6):56-62.
[24] 刘彪, 许瑞, 王居贺, 等. 基于改进的主成分分析法的钻头优选评价模型[J]. 石油机械, 2020, 48(9):8-14.
[24] LIU Biao, XU Rui, WANG Juhe, et al. Bit selection and evaluation model based on improved principal component analysis[J]. China Petroleum Machinery, 2020, 48(9):8-14.
文章导航

/