智能化评价

机器学习预测油气产量现状

  • 黄家宸 ,
  • 张金川
展开
  • 1.中国石化石油勘探开发研究院,北京 100083
    2.中国地质大学(北京)能源学院,北京 100083
    3.自然资源部页岩气资源战略评价重点实验室,北京 100083
    4.非常规天然气能源地质评价与开发工程北京市重点实验室,北京 100083
黄家宸(1993—),男,博士,助理研究员,从事地球物理及油气田大数据研究工作。地址:北京市海淀区学院路31号中国石化石油勘探开发研究院,邮政编码:100083。E-mail: huangjiachen.hjc@163.com

收稿日期: 2021-05-18

  网络出版日期: 2021-08-19

基金资助

国家自然科学基金项目“页岩含气性关键参数测试及智能评价系统”(41927801)

Overview of oil and gas production forecasting by machine learning

  • Jiachen HUANG ,
  • Jinchuan ZHANG
Expand
  • 1. Sinopec Petroleum Exploration and Production Research Institute, Beijing 100083, China
    2. China University of Geosciences(Beijing), Beijing 100083, China
    3. Key Laboratory of Shale Gas Exploration and Evaluation, Ministry of Land and Resources, Beijing 100083, China
    4. Beijing Key Laboratory of Unconventional Natural Gas Geology Evaluation and Development Engineering, Beijing 100083, China

Received date: 2021-05-18

  Online published: 2021-08-19

摘要

机器学习是一种通用的数据驱动分析方法,也是一个重要的油气大数据分析利用手段。油气勘探开发作为具有悠久历史和庞大数据基础的重要领域,具有很大的数据挖掘潜力。利用油气田大数据分析技术可以帮助决策者进行投资分析、风险评估、生产优化,带来巨大的经济效益。机器学习方法早已被研究人员尝试应用于油气领域相关研究,随着机器学习算法的发展,许多应用场景被不断提出,但针对具体场景的通用方案仍在探索中。笔者从最基本原理着手介绍了机器学习的建模过程,梳理了用于油气田大数据分析的3类主要机器学习方法的发展历史,结合油气田大数据的特点,讨论了油气田大数据分析利用的核心内容、目标及优势,分析了机器学习在油气领域的主要应用场景,总结了目前典型油气产量预测中存在的问题及对策。

本文引用格式

黄家宸 , 张金川 . 机器学习预测油气产量现状[J]. 油气藏评价与开发, 2021 , 11(4) : 613 -620 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.04.018

Abstract

The machine learning is not only an important tool for oil and gas big data analysis, but also a general data-driven analysis method. As an important field with a long history and a large data base, oil and gas exploration and development has a great potential for data mining. The use of big data analysis technology for oil and gas field can help decision makers to conduct investment analysis, risk assessment and production optimization, which brings significant economic benefits. The machine learning method has been tried by the researchers applying to the researches on oil and gas. Nowadays, many application scenarios have been proposed with the development of machine learning algorithms, but general solutions for specific scenario are still divided. So that, we introduces the procedure of a machine learning modeling upon the most basic principles, and summarizes the development history of the main three kinds of machine learning methods that can be applied to oil and gas big data analysis. And then based on the characteristics of oil and gas field big data, the core contents, goals and advantages of oil and gas field big data analysis and utilization are discussed, the main application scenarios of machine learning in oil and gas field are analyzed, and the existing problems and countermeasures in typical oil and gas production prediction are summarized.

参考文献

[1] 李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012.
[1] LI Hang. Statistical learning method[M]. Beijing: Tsinghua University Press, 2012.
[2] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
[2] ZHOU Zhihua. Machine learning[M]. Beijing: Tsinghua University Press, 2016.
[3] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Boston: MIT Press, 2016.
[4] FISHER R A. The use of multiple measurements in taxonomic problems[J]. Annals of Eugenics, 1936, 7(2):179-188.
[5] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
[6] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297.
[7] ROSENBLATT F. The perceptron: A probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958, 65(6):386.
[8] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088):533-536.
[9] CUN Y L. Generalization and network design strategies[J]. Connectionism in Perspective, 1989, 19:143-155.
[10] ELMAN J L. Distributed representations, simple recurrent networks, and grammatical structure[J]. Machine Learning, 1991, 7(2):195-225.
[11] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[J]. Advances in neural information processing systems, 2014, 27.
[12] FREUND Y. Boosting a weak learning algorithm by majority[J]. Information and Computation, 1995, 121(2):256-285.
[13] WARD J H. Hierarchical grouping to optimize an objective function[J]. Journal of the American Statistical Association, 1963, 58:236-244.
[14] MACQUEEN J. Some methods for classification and analysis of multivariate observations[J]. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1967, 1(14):281-297.
[15] DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B(Methodological), 1977, 39(1):1-22.
[16] CHENG Y. Mean shift, mode seeking, and clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8):790-799.
[17] SHI J, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905.
[18] MIKOLOV T, KARAFIÁT M, BURGET L, et al. Recurrent neural network based language model [C]// Eleventh annual conference of the international speech communication association, Chiba, 2010.
[19] GREGOR K, DANIHELKA I, GRAVES A, et al. Draw: A recurrent neural network for image generation [C]// International Conference on Machine Learning, PMLR, Lille, 2015.
[20] DOYA K. Bifurcations of recurrent neural networks in gradient descent learning[J]. IEEE Transactions on Neural Networks, 1993, 1(75):218.
[21] SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11):2673-2681.
[22] GRAVES A, FERNÁNDEZ S, SCHMIDHUBER J. Multi-dimensional recurrent neural networks [C]// International conference on artificial neural networks. Springer, Berlin, 2007.
[23] KALCHBRENNER N, DANIHELKA I, GRAVES A. Grid long short-term memory [C]// International Conference on Learning Representations, London, 2016.
[24] BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 2(5):157-166.
[25] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
[26] GERS F A, SCHMIDHUBER J, CUMMINS F. Learning to forget: Continual prediction with LSTM[J]. Neural Computation, 2000, 12(10):2451-2471.
[27] NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines [C]// ICML, Haifa, 2010.
[28] PASCANU R, MIKOLOV T, BENGIO Y. On the difficulty of training recurrent neural networks [C]// International conference on machine learning, PMLR, Atlanta, 2013.
[29] SRIVASTAVA N. Improving neural networks with dropout[D]. Toronto: University of Toronto, 2013, 182:566.
[30] LOLON E, HAMIDIEH K, WEIJERS L, et al. Evaluating the relationship between well parameters and production using multivariate statistical models: A middle bakken and three forks case history [C]// SPE hydraulic fracturing technology conference, Woodlands, 2016.
[31] CLAR F H, MONACO A. Data-driven approach to optimize stimulation design in Eagle Ford formation [C]//Unconventional Resources Technology Conference, Denver, 2019.
[32] MONTGOMERY J B, O’SULLIVAN F M. Spatial variability of tight oil well productivity and the impact of technology[J]. Applied Energy, 2017, 195:344-355.
[33] ZHOU Q, KLEIT A, WANG J, et al. Evaluating gas production performances in marcellus using data mining technologies [C]//Unconventional Resources Technology Conference. Denver, 2014.
[34] CLARKSON C R, JENSEN J L, PEDERSEN P K, et al. Innovative methods for flow-unit and pore-structure analyses in a tight siltstone and shale gas reservoir[J]. AAPG bulletin, 2012, 96(2):355-374.
[35] SCHUETTER J, MISHRA S, ZHONG M, et al. Data analytics for production optimization in unconventional reservoirs [C]// Unconventional Resources Technology Conference, San Antonio, 2015.
[36] 陈云天. 基于机器学习的测井曲线补全与生成研究[D]. 北京:北京大学, 2020.
[36] CHEN Yuntian. Research on well log completion and generation based on machine learning[D]. Beijing: Peking University, 2020.
[37] SAGHEER A, KOTB M. Time series forecasting of petroleum production using deep LSTM recurrent networks[J]. Neurocomputing, 2019, 323:203-213.
[38] 周于皓, 刘慧卿, 祁鹏, 等. 基于循环神经网络的缝洞型油藏油井产量预测[J]. 计算物理, 2018, 35(6):668-674.
[38] ZHOU Yuhao, LIU Huiqing, QI Peng, et al. Forecast of oil production in fractured-vuggy reservoir by using recurrent neural networks[J]. Chinese Journal of Computational Physics, 2018, 35(6):668-674.
[39] 谷建伟, 周梅, 李志涛, 等. 基于数据挖掘的长短期记忆网络模型油井产量预测方法[J]. 特种油气藏, 2019, 26(2):77-81.
[39] GU Jianwei, ZHOU Mei, LI Zhitao, et al. Oil well production forecast with long - short term memory network model based on data mining[J]. Special Oil and Gas Reservoirs, 2019, 26(2):77-81.
文章导航

/