智能化评价

分散式CO2-EOR项目数字化管理转型探索与实践

  • 陈兴明
展开
  • 中国石化华东石油局江苏华扬液碳有限责任公司,江苏 泰州 225411
陈兴明(1971—),男,工程师,主要从事CO2环保捕集与应用、油气田开发技术服务等工作。地址:江苏省泰兴市黄桥镇城黄路316号,邮政编码:225411。E-mail: chenxm.hdsj@sinopec.com

收稿日期: 2021-04-06

  网络出版日期: 2021-08-19

Digital management transformation of distributed CO2-EOR project: Exploration and practice

  • Xingming CHEN
Expand
  • Jiangsu Huayang Liquid Carbon Co., LTD., Sinopec East China Petroleum Bureau, Taizhou, Jiangsu 225411, China

Received date: 2021-04-06

  Online published: 2021-08-19

摘要

CCUS(碳捕集、利用与封存)是应对全球气候变化的关键技术之一,其中,CO2-EOR(碳捕集、封存与提高采收率)是CCUS技术的重要组成部分。为有效应对高成本、低油价对CO2驱油形成的压力,推动CCUS项目的大规模推广应用,中国石化华东石油局江苏华扬液碳有限责任公司参照数字化油气田建设的模板,按照“生产自动化、安全联锁化、现场无人化、管理集中化”的工作思路,加强CO2运输、驱油现场先进信息技术与生产管理的深度融合。通过引入安全监控系统和信息化远程控制平台的建设与运营,实现了CO2运输系统、注入系统和生产区域安防系统的数字化管理,保障了CO2运输安全规范、驱油现场智能高效、生产区域有效监管,完成了分散式CO2-EOR项目数字化管理转型的探索与实践。通过系统化的数字化建设,实现了CO2-EOR综合成本最低、安全保障最优,对CCUS项目的大规模推广应用具有重要意义。

本文引用格式

陈兴明 . 分散式CO2-EOR项目数字化管理转型探索与实践[J]. 油气藏评价与开发, 2021 , 11(4) : 635 -642 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.04.021

Abstract

Carbon capture, utilization and storage, or CCUS, is one of the key technologies to deal with global climate change, among which CO2-EOR is an important part. In order to effectively solve the problems that caused by the high cost and low oil price on CO2 flooding, and promote the large-scale popularization and application of CCUS project, Jiangsu Huayang Liquid Carbon Co., LTD. of Sinopec East China Petroleum Bureau strengthen the integration of the advanced information of carbon dioxide transportation or oil displacement and the production management according to the template of digital oil and gas field construction and in accordance with the working idea of “production automation, safety interlock, unmanned on site and centralized management”. Through the construction and operation of safety monitoring system and information remote control platform, the digital management of CO2 transportation system, injection system and production area security system is realized, which ensure the safety standard of carbon dioxide transportation, intelligent and efficient oil displacement site and effective supervision in production area. The exploration and practice of digital management transformation of distributed CO2-EOR project have been completed. By this systematic digital construction, the lowest comprehensive cost and the best security guarantee of CO2-EOR has been achieved, which is of great significance to the large-scale popularization and application of CCUS project.

参考文献

[1] 于泽伟. 碳中和目标下的CCUS[J]. 中国能源, 2020,(12):89-90.
[1] YU Zewei. CCUS under the goal of carbon neutralization[J]. Energy of China, 2020, (12):89-90.
[2] 申硕, 樊静丽, 陈其针, 等. 碳捕集、利用与封存(CCUS)技术的文献计量分析[J]. 热力发电, 2021, 50(1):47-53.
[2] SHEN Shou, FAN Jingli, CHEN Qizhen, et al. Bibliometric analysis of carbon capture, utilization and storage technology[J]. Thermal Power Generation, 2021, 50(1):47-53.
[3] 刘经纬, 黄亮, 仲学哲, 等. 超临界CO2对稠油物理化学性质影响实验[J]. 石油地质与工程, 2020, 34(4):84-89.
[3] LIU Jingwei, HUANG Liang, ZHONG Xuezhe, et al. Experimental study on the effect of supercritical CO2 on the physicochemical properties of heavy oil[J]. Petroleum Geology & Engineering, 2020, 34(4):84-89.
[4] 孙焕泉, 王海涛, 吴光焕, 等. 稠油油藏注CO2提高采收率影响因素研究[J]. 石油实验地质, 2020, 42(6):1009-1013.
[4] SUN Huanquan, WANG Haitao, WU Guanghuan, et al. CO2 EOR factors in heavy oil reservoirs[J]. Petroleum Geology & Experiment, 2020, 42(6):1009-1013.
[5] 高冉, 吕成远, 伦增珉, 等. 二氧化碳驱替与埋存一体化数值模拟[J]. 特种油气藏, 2021, 28(2):102-107.
[5] GAO Ran, LYU Chengyuan, LUN Zengmin, et al. Numerical simulation of carbon dioxide displacement and storage integration[J]. Special Oil & Gas Reservoir, 2021, 28(2):102-107.
[6] 林涛, 孙永涛, 孙玉豹, 等. 适度注气在稠油热采中的优化[J]. 石油地质与工程, 2020, 34(4):46-49.
[6] LIN Tao, SUN Yongtao, SUN Yubao, et al. Optimization of moderate gas injection in heavy oil thermal recovery[J]. Petroleum Geology & Engineering, 2020, 34(4):46-49.
[7] 刘刚. 致密油体积压裂水平井CO2吞吐注采参数优化[J]. 石油地质与工程, 2020, 34(2):90-93.
[7] LIU Gang. Optimization of injection and production parameters of CO2 huff and puff by horizontal wells with volume fracturing in tight oil[J]. Petroleum Geology & Engineering, 2020, 34(2):90-93.
[8] 冯乔. 草舍Et油藏CO2驱混相特征及效果评价方法[D]. 成都:西南石油大学, 2014.
[8] FENG Qiao. Miscibility characteristics and effect evaluation method of CO2 flooding in Caoshe Et reservoir[D]. Chengdu: Southwest Petroleum University, 2014.
[9] 钱卫明, 林刚, 王波, 等. 底水驱稠油油藏水平井多轮次CO2吞吐配套技术及参数评价[J]. 石油地质与工程, 2020, 34(1):107-111.
[9] QIAN Weiming, LIN Gang, WANG Bo, et al. Multi-cycle CO2 huff and puff matching technology and parameter evaluation for horizontal wells in heavy oil reservoirs with bottom water drive[J]. Petroleum Geology & Engineering, 2020, 34(1):107-111.
[10] 李宛珊, 王健, 任振宇, 等. 低渗透油藏二氧化碳气溶性泡沫控制气窜实验研究[J]. 特种油气藏, 2019, 26(5):136-141.
[10] LI Wanshan, WANG Jian, REN Zhenyu, et al. Gas-channeling control experiment with carbon dioxide gas-soluble foam in low-permeability oil reservoir[J]. Special Oil & Gas Reservoirs, 2019, 26(5):136-141.
[11] 刘云华. 东濮老区油藏提高采收率技术取得新进展[J]. 断块油气田, 2021, 28(1):13.
[11] LIU Yunhua. New progress has been made in EOR technology of Dongpu old reservoir[J]. Fault Block Oil and Gas Field, 2021, 28(1):13.
[12] 刘小波. CO2混相驱技术在特低渗透滩坝砂油藏的开发实践及效果评价[J]. 油气地质与采收率, 2020, 27(3):113-119.
[12] LIU Xiaobo. Application and evaluation of CO2 miscible flooding in extra-low permeability beach-bar sand reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(3):113-119.
[13] 李阳. 低渗透油藏CO2驱提高采收率技术进展及展望[J]. 油气地质与采收率, 2020, 27(1):1-10.
[13] LI Yang. Technical advancement and prospect for CO2 flooding enhanced oil recovery in low permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1):1-10.
[14] JIANG K, ASHWORTH P, ZHANG S, et al. China's carbon capture, utilization and storage (CCUS) policy: A critical review[J]. Renewable and Sustainable Energy Reviews, 2020, 119:109601.
[15] ADU E, ZHANG Y, LIU D. Current situation of carbon dioxide capture, storage, and enhanced oil recovery in the oil and gas industry[J]. The Canadian Journal of Chemical Engineering, 2018, 97(5):1048-1076.
[16] 田巍. 老油田注CO2开发提高注气能力的方法[J]. 石油与天然气化工, 2020, 49(3):72-77.
[16] TIAN Wei. A method of improving gas injection capacity by CO2 injection for old oilfield[J]. Chemical Engineering of Oil & Gas, 2020, 49(3):72-77.
[17] 田巍. CO2驱提高采收率方法在深层低渗透油藏的应用[J]. 石油地质与工程, 2020, 34(4):50-54.
[17] TIAN Wei. Application of CO2-EOR in the deep low permeability reservoir[J]. Petroleum Geology & Engineering, 2020, 34(4):50-54.
[18] 聂法健, 毛洪超, 王庆, 等. 中原油田CO2驱提高采收率技术及现场实践[J]. 油气地质与采收率, 2020, 27(1):146-151.
[18] NIE Fajian, MAO Hongchao, WANG Qing, et al. CO2 flooding for enhanced oil recovery technology and field practice in Zhongyuan Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1):146-151.
[19] 丁妍. 濮城油田低渗高压注水油藏转CO2驱技术及应用[J]. 石油地质与工程, 2019, 33(6):73-76.
[19] DING Yan. Technology and application of CO2 flooding in low-permeability and high-pressure water injection reservoirs in Pucheng oilfield[J]. Petroleum Geology & Engineering, 2019, 33(6):73-76.
[20] SONG Z J, SONG Y L, LI Y Z, et al. A critical review of CO2 enhanced oil recovery in tight oil reservoirs of North America and China[J]. Fuel, 2020, 276(5):118006.
[21] 徐辉, 程秀梅, 易明华, 等. 金南油田地层原油相态及注CO2膨胀实验研究[J]. 非常规油气, 2020, 7(2):64-67.
[21] XU Hui, CHENG Xiumei, YI Minghua, et al. Experimental study on formation crude oil phase and CO2 injection expansion in Jinnan oilfield[J]. Unconventional Oil & Gas, 2020, 7(2):64-67.
[22] 陈祖华, 吴公益, 钱卫明, 等. 苏北盆地复杂小断块油藏注CO2提高采收率技术及应用[J]. 油气地质与采收率, 2020, 27(1):152-162.
[22] CHEN Zuhua, WU Gongyi, QIAN Weimin, et al. EOR technology and application of CO2 injection for small complex fault block reservoirs in Subei Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1):152-162.
[23] 曾隽, 高和群, 易明华, 等. 苏北区块最小混相压力预测[J]. 石油地质与工程, 2019, 33(4):50-53.
[23] ZENG Juan, GAO Hequn, YI Minghua, et al. Prediction of minimum miscible pressure in northern block of Jiangsu[J]. Petroleum Geology & Engineering, 2019, 33(4):50-53.
[24] 叶航, 刘琦, 彭勃. 基于二氧化碳驱油技术的碳封存潜力评估研究进展[J]. 洁净煤技术, 2021, 27(2):107-116.
[24] YE Hang, LIU Qi, PENG Bo. Research progress in evaluation of carbon storage potential based on CO2 flooding technology[J]. Clean Coal Technology, 2021, 27(2):107-116.
[25] 康宇龙, 白艳伟, 江绍静, 等. 延长石油碳捕集、利用与封存全流程技术特色与工程实践[J]. 应用化工, 2020, 49(7):1768-1771.
[25] KANG Yulong, BAI Yanwei, JIANG Shaojing, et al. Technical features and engineering practice of Yanchang full-chain carbon capture,utilization and storage project[J]. Applied Chemical Industry, 2020, 49(7):1768-1771.
[26] 王维波, 汤瑞佳, 江绍静, 等. 延长石油煤化工CO2捕集、利用与封存(CCUS)工程实践[J]. 非常规油气, 2021, 8(2):1-7.
[26] WANG Weibo, TANG Ruijia, JIANG Shaojing, et al. The engineering practice of CO2 capture, utilization and storage(CCUS) in coal chemical industry of Yanchang Petroleum[J]. Unconventional Oil & Gas, 2021, 8(2):1-7.
[27] 秦积舜, 李永亮, 吴德斌, 等. CCUS全球进展与中国对策建议[J]. 油气地质与采收率, 2020, 27(1):20-28.
[27] QIN Jishun, LI Yongliang, WU Debin, et al. CCUS global progress and China’s policy suggestions[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1):20-28.
[28] 张妍, 池晓彤, 康蓉. 全球CCS技术的研究、发展与应用动态[J]. 中外能源, 2020, 25(4):1-10.
[28] ZHANG Yan, CHI Xiaotong, KANG Rong. Research, development and application trends of CCS technology worldwide[J]. Sinoglobal Energy, 2020, 25(4):1-10.
[29] 计秉玉. 中国CCUS的发展、机遇与挑战[C]// 第四届CCUS国际论坛,北京, 2017.
[29] JI Bingyu. Development, opportunities and challenges of CCUS in China[C]// The 4th CCUS International Forum, April 2017, Beijing, 2017.
[30] 赵丰年, 辛翠平. 储层CO2封存能力研究[J]. 非常规油气, 2020, 7(3):72-76.
[30] ZHAO Fengnian, XIN Cuiping. Study on CO2 storage capacity of reservoirs[J]. Unconventional Oil & Gas, 2020, 7(3):72-76.
[31] 张冰, 梁凯强, 王维波, 等. 鄂尔多斯盆地深部咸水层CO2有效地质封存潜力评价[J]. 非常规油气, 2019, 6(3):15-20.
[31] ZHANG Bing, LIANG Kaiqiang, WANG Weibo, et al. Evaluation of effective CO2 geological sequestration potential of deep saline aquifer in Ordos Basin[J]. Unconventional Oil & Gas, 2019, 6(3):15-20.
[32] 李丰辉, 乐平, 王聚锋, 等. 强底水油藏剩余油分布特征及驱替开采可行性研究[J]. 石油地质与工程, 2020, 34(6):47-52.
[32] LI Fenghui, LE Ping, WANG Jufeng, et al. Study on the distribution characteristics of remaining oil in strong bottom water reservoir and the feasibility of displacement production[J]. Petroleum Geology & Engineering, 2020, 34(6):47-52.
[33] 张炜, 粟鹏, 刘启聪, 等. 物联网技术在天然气分离计量集成装置改进中的应用[J]. 石油与天然气化工, 2020, 49(5):92-97.
[33] ZHANG Wei, SU Peng, LIU Qicong, et al. Practical application of Internet of Things technology in the improvement of natural gas separation and metering integrated skid-mounted equipment[J]. Chemical Engineering of Oil & Gas, 2020, 49(5):92-97.
[34] 段礼祥, 李涛, 唐瑜, 等. 基于多源异构信息融合的机械故障诊断方法[J]. 石油机械, 2021, 49(2):60-67,80.
[34] DUAN Lixiang, LI Tao, TANG Yu, et al. Mechanical fault diagnosis method based on multi-source heterogeneous information fusion[J]. China Petroleum Machinery, 2021, 49(2):60-67, 80.
[35] 谢军. “互联网+”时代智慧油气田建设的思考与实践[J]. 天然气工业, 2016, 36(1):137-145.
[35] XIE Jun. Construction of smart oil and gas fields in the “Internet Plus” era[J]. Natural Gas Industry, 2016, 36(1):137-145.
[36] 彭章保, 王绍平, 张远东, 等. 油田开发与数字化信息化融合的实践与认识[J]. 中国管理信息化, 2020, 23(21):62-63.
[36] PENG Zhangbao, WANG Shaoping, ZHANG Yuandong, et al. Practice and understanding of the integration of oilfield development and digital Informaionization[J]. China Management Informaionization, 2020, 23(21):62-63.
文章导航

/