综合研究

构造对深层煤层气井产能的控制研究

  • 李鑫
展开
  • 中国石化华东油气分公司勘探开发研究院,江苏 南京 210019
李鑫(1984—),男,硕士,工程师,从事煤层气勘探开发研究。地址:江苏省南京市建邺区江东中路375号金融城9号楼,邮政编码:210019。E-mail: 282945654@qq.com

收稿日期: 2021-03-04

  网络出版日期: 2021-08-19

基金资助

中国石化重点科技项目“低压煤系气藏地质工程一体化高效开发关键技术研究”(P20074-1);中国石化科技部项目“延川南深层煤层气稳产技术研究”(P19019-4)

Structural control on productivity of deep coalbed methane wells

  • Xin LI
Expand
  • Petroleum Exploration & Production Research Institute, Sinopec East China Oil & Gas Company, Nanjing, Jiangsu 210019, China

Received date: 2021-03-04

  Online published: 2021-08-19

摘要

延川南区块属于深层高阶煤煤层气藏,埋深800~1 500 m、煤阶为贫煤—无烟煤、含气量超过12 m3/t,资源条件有利,但气田单井产能平面差异大。基于气田地质条件综合研究,通过构造对储层生烃、孔渗性、水文地质条件、煤体结构、煤层气赋存的影响性分析,开展构造对煤层气成藏控制作用机理研究,查明煤层气成藏的构造主控因素及其变化规律。结合煤层气开发动态资料,分析区块构造与煤层气井产能的关系,建立煤层气井产能的构造控气模式。研究结果表明,煤层埋深控制了储层的含气性、渗透性,埋深越深,含气性越好,渗透性越差,构造对煤层气富集成藏的主控作用具有两面性,局部褶皱和断层的发育对渗透性具有明显的改善作用,有利于气藏富集,但是构造活动过强,会导致水动力条件增强,煤层气逸散。构造对气井产能的控制作用明显,高产井主要分布于埋深830~1 280 m的局部微幅隆起带翼部的煤层气富集和渗透率改善区,中产井主要分布于埋深大于1 280 m、构造平缓、断层不发育的低渗区;低产井主要分布于构造破坏严重的局部洼陷区以及断层发育带附近的煤层气逸散区。

本文引用格式

李鑫 . 构造对深层煤层气井产能的控制研究[J]. 油气藏评价与开发, 2021 , 11(4) : 643 -651 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.04.022

Abstract

The southern Yanchuan Block is a deep, high-rank coal-bed methane reservoir with large buried depth at 800~1 500 m, meagre coal or anthracite, and good gas content at 12 m3/t. The resource conditions are relatively favorable, but the single well productivity level of the gas field varies greatly. Based on the comprehensive study of gas field geological conditions, and by the analysis of the influence of structure on reservoir hydrocarbon generation, porosity and permeability, hydrogeological conditions, coal body structure, and CBM storage, the researches on the control mechanism of structure on CBM reservoir formation are carried out to find out the main controlling factors of coal seam formation and its changing rules. Combined with the CBM development dynamic data, the relation between block structure and CBM well productivity is analyzed, and a structural gas control mode for CBM well productivity is established. The research results show that the buried depth of the coal seam controls the gas-bearing and permeability of the reservoir. The deeper the buried, the better the gas-bearing and the worse the permeability. The control effect of tectonic activities on the formation of coal-bed methane has two sides, the local folds and the development of faults has a significant effect on improving permeability, which is conducive to the enrichment of gas reservoirs, but the excessive tectonic activity on the other hand will also lead to the enhanced hydrodynamic conditions and the escape of coalbed methane. The structure has an obvious control effect on the gas well productivity. The high-yield wells are mainly distributed in the coalbed methane enrichment and the permeability improvement areas at the wing of the local micro-uplift belt with a buried depth of 830~1 280 m. The middle-production wells are mainly distributed in the low-permeability areas with a buried depth of more than 1 280 m, whose structure is gentle and the faults are not developed. The low-yield wells are mainly distributed in local depression areas with severe structural damage and CBM escape areas near fault development belts.

参考文献

[1] 刘大锰, 刘正帅, 蔡益栋. 煤层气成藏机理及形成地质条件研究进展[J]. 煤炭科学技术, 2020, 48(10):1-16
[1] LIU Dameng, LIU Zhengshuai, CAI Yidong. Research progress on accumulation mechanism and formation geological conditions of coalbed methane[J]. Coal Science and Technology, 2020, 48(10):1-16
[2] 李辛子, 王运海, 姜昭琛, 等. 深部煤层气勘探开发进展与研究[J]. 煤炭学报, 2016, 41(1):24-31.
[2] LI Xinzi, WANG Yunhai, JIANG Zhaochen, et al. Progress and study on exploration and production for deep coalbed methane[J]. Journal of China Coal Society, 2016, 41(1):24-31.
[3] 陈贞龙, 郭涛, 李鑫, 等. 延川南煤层气田深部煤层气成藏规律与开发技术[J]. 煤炭科学技术, 2019, 47(9):112-118.
[3] CHEN Zhenlong, GUO Tao, LI Xin, et al. Enrichment law and development technology of deep coalbed methane in South Yanchuan Coalbed Methane Field[J]. Coal Science and Technology, 2019, 47(9):112-118
[4] 陈贞龙, 王烽, 陈刚, 等. 延川南深部煤层气富集规律及开发特征研究[J]. 煤炭科学技术, 2018, 46(6)80-84.
[4] CHEN Zhenlong, WANG Feng, CHEN Gang, et al. Study on enrichment law and development features of deep coalbed methane in South Yanchuan Field[J]. Coal Science and Technology, 2018, 46(6):80-84.
[5] 陆小霞, 张兵, 吴见, 等. 柿庄北区块深部煤层气产能特征及影响因素分析[J]. 煤炭科学技术, 2018, 46(6):92-100.
[5] LU Xiaoxia, ZHANG Bing, WU Jian, et al. Analysis on production features and influence factors of coalbed methane in deep section of north Shizhuang Block[J]. Coal Science and Technology, 2018, 46(6):92-100.
[6] 王丹. 临汾区块煤层气富集及产能影响因素研究[D]. 北京:中国矿业大学(北京),2016.
[6] WANG Dan. The research of affective facts of production and enrichment of CBM in Linfen Block[D]. China University of Mining & Technology, Beijing, 2016.
[7] 王睿, 董范, 孟召平, 等. 樊庄区块构造对煤层气井产能的控制机理[J]. 中国矿业大学学报, 2014, 43(6):1025-1030.
[7] WANG Rui, DONG Fang, MENG Zhaoping, et al. The controlling mechanism of geological structures on the production of coal bed methane wells in Fanzhuang block[J]. Journal of China University of Mining & Technology, 2014, 43(6):1025-1030.
[8] 赵欣. 煤层气产能主控因素及开发动态特征研究[D]. 徐州:中国矿业大学(徐州).2017.
[8] ZHAO Xin. The Study of Main Influence Factors on Productivity of Coalbed Methane Welland the Development Performance[D]. China University of Mining & Technology, Xuzhou, 2017.
[9] 王维旭, 贺满江, 王希友, 等. 筠连区块煤层气产能主控因素分析及综合评价[J]. 煤炭科学技术, 2017, 45(9):194-200.
[9] WANG Weixu, HE Manjiang, WANG Xiyou, et al. Analysis on main controlling factors and comprehensive evaluation of coalbed methane production capacity of Junlian Block[J]. Coal Science and Technology, 2017, 45(9):194-200.
[10] 谢广龙. 贵州比德区块煤岩储层特征及富集主控因素分析[J]. 非常规油气, 2019, 6(1):14-22.
[10] XIE Guanglong. Analysis of Characteristics and Main Controlling Factors of Coal Reservoir in Bide Block, Guizhou[J]. Unconventional Oil & Gas, 2019, 6(1):14-22.
[11] 杨显成, 蒋有录, 杨昕睿, 等. 煤层气含量的主控因素——以卡拉哈里盆地XX区块为例[J]. 油气地质与采收率, 2018, 25(1):56-60.
[11] YANG Xiancheng, JIANG Youlu, YANG Xinrui, et al. Study on main controlling factors of the coalbed methane content: A case study of Block XX in Kgalahari Basin[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(1):56-60.
[12] 王镜惠, 王美冬, 田锋, 等. 高煤阶煤层气储层产气能力定量评价[J]. 油气地质与采收率, 2019, 26(4):105-110.
[12] WANG Jinghui, WANG Meidong, TIAN Feng, et al. Quantitative evaluation of production capacity of high rank coalbed methane reservoir[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(4):105-110.
[13] 杨帆, 胡烨, 罗开平, 等. 中国中西部地区关键构造变革期次及变形特征[J]. 石油实验地质, 2019, 41(4):475-481.
[13] YANG Fan, HU Ye, LUO Kaiping, et al. Tectonic evolution stages and deformation characteristics in central and western China[J]. Petroleum Geology & Experiment, 2019, 41(4):475-481.
[14] 徐旭辉, 方成名, 刘金连, 等. 中国中西部山前构造变形结构分带模式与油气[J]. 石油实验地质, 2019, 41(6):779-790.
[14] XU Xuhui, FANG Chengming, LIU Jinlian, et al. Deformation zoning model of piedmont thrust, western China, and its petroleum response[J]. Petroleum Geology & Experiment, 2019, 41(6):779-790.
[15] 李勇, 汤达祯, 孟尚志, 等. 鄂尔多斯盆地东缘煤储层地应力状态及其对煤层气勘探开发的影响[J]. 矿业科学学报, 2017, 2(5):416-424.
[15] LI Yong, TANG Dazhen, MENG Shangzhi, et al. The in-situ stress of coal reservoirs in east margin of Ordos Basin and its influence on coalbed methane development[J]. Journal of Mining Science and Technology, 2017, 2(5):416-424.
[16] 吴双, 汤达祯, 李松, 等. 煤层气储层孔渗参数的应力响应特征[J]. 油气地质与采收率, 2019, 26(6):80-86.
[16] WU Shuang, TANG Dazhen, LI Song, et al. Stress response characteristics of porosity and permeability of coalbed methane reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(6):80-86.
[17] 秦勇, 申建. 论深部煤层气基本地质问题[J]. 石油学报, 2016, 37(1):125-136.
[17] QIN Yong, SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica, 2016, 37(1):125-136.
[18] 陈刚, 胡宗全, 张永贵, 等. 延川南区块煤层气富集高产的地质控制作用[J]. 天然气地球科学, 2016, 27(11):2093-2102.
[18] CHEN Gang, HU Zongquan, ZHANG Yonggui, et al. Study on the geological of gas effect of coalbed methane enrichment and high-yield in Yanchuannan Area[J]. Natural Gas Geoscience, 2016, 27(11):2093-2102
[19] 郭涛. 延川南区块煤层气田构造及水文控气作用研究[J]. 煤炭科学技术, 2015, 43(12):166-169.
[19] GUO Tao. Study on structure and hydrologic gas control role of coalbed methane gas field in Yanchuannan Block[J]. Coal Science and Technology, 2015, 43(12):166-169, 103.
[20] 余林. 延川南地区水文地质条件及煤层气成藏[J]. 煤田地质与勘探, 2017, 45(2):69-74.
[20] YU Lin. Groundwater conditions and relative CBM accumulation feature in Yanchuannan area[J]. Coal Geology & Exploration, 2017, 45(2):69-74.
[21] 陈刚, 胡宗全, 苏坤, 等. 鄂东南延川南深煤层煤体结构与产气量关系分析[J]. 煤炭科学技术, 2016, 44(12):107-112.
[21] CHEN Gang, HU Zongquan, SU Kun, et al. Analysis on relationship between coal structure and gas production quantity in deep coal seam of Yanchuannan Area at Southeast Ordos[J]. Coal Science and Technology, 2016, 44(12):107-112.
[22] 付玉通, 张伟, 李永臣, 等. 鄂东南地区深部煤层气煤体结构测井评价研究[J]. 中国煤炭, 2017, 43(9):31-34.
[22] FU Yutong, ZHANG Wei, LI Yongchen, et al. Logging evaluation research on the structure of deep coalbody with CBM in the southeast of Hubei province[J]. China Coal, 2017, 43(9):31-34, 47.
[23] 郑贵强, 杨德方, 李小明, 等. 沁水盆地柿庄北区块深部煤储层特征测井评价研究[J]. 煤炭科学技术, 2019, 47(6):178-186.
[23] ZHENG Guiqiang, YANG Defang, LI Xiaoming, et al. Study on features and logging evaluation of deep coal reservoir in North Shizhuang Block of Qinshui Basin[J]. Coal Science and Technology, 2019, 47(6):178-186.
[24] 原俊红, 付玉通, 宋昱. 深部煤层气储层测井解释技术及应用[J]. 油气地质与采收率, 2018, 25(5):24-31.
[24] YUAN Junhong, FU Yutong, SONG Yu. Logging interpretation technology and its application to deep coalbed methane reservoir[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(5):24-31.
[25] 陈刚, 胡宗全. 鄂尔多斯盆地东南缘延川南深层煤层气富集高产模式探讨[J]. 煤炭学报, 2018, 43(6):1572-1579.
[25] CHEN Gang, HU Zongquan. Discussion on the model of enrichment and high yield of deep coalbed methane in Yanchuannan area at Southeastern Ordos Basin[J]. Journal of China Coal Society, 2018, 43(6):1572-1579.
[26] 常会珍, 郝春生, 张蒙, 等. 寺河井田煤层气产能分布特征及影响因素分析[J]. 煤炭科学技术, 2019, 47(6):171-177.
[26] CHANG Huizhen, HAO Chunsheng, ZHANG Meng, et al. Analysis on distribution and its influencing factors of coalbed methane productivity in Sihe Minefield[J]. Coal Science and Technology, 2019, 47(6):171-177.
[27] 陈世达, 汤达祯, 陶树, 等. 沁南–郑庄区块深部煤层气“临界深度”探讨[J]. 煤炭学报, 2016, 41(12):3069-3075.
[27] CHEN Shida, TANG Dazhen, TAO Shu, et al. Discussion about “critical depth”of deep coalbed methane in Zhengzhuang area,Qinshui Basin[J]. Journal of China Coal Society, 2016, 41(12):3069-3075.
文章导航

/