海上油气勘探与开发

海上低渗油藏注水水质关键参数界限研究——以涠洲11-4N油田流沙港组为例

  • 汤明光 ,
  • 刘清华 ,
  • 薛国庆 ,
  • 张芨强 ,
  • 鲁瑞彬
展开
  • 中海石油(中国)有限公司湛江分公司,广东 湛江 524057
汤明光(1986—),男,硕士,工程师,主要从事油藏工程方法方面的研究工作。地址:广东省湛江市坡头区南油二区,邮政编码:524057。E-mail: tangmg@cnooc.com.cn

收稿日期: 2020-11-25

  网络出版日期: 2021-10-12

基金资助

“十三五”国家科技重大专项“南海西部海域低渗油藏勘探开发关键技术研究”(2016ZX05024-006)

Key parameter limits of water injection quality in offshore low permeability reservoir: A case study of Liushagang Formation in Weizhou 11-4N Oilfield

  • Mingguang TANG ,
  • Qinghua LIU ,
  • Guoqing XUE ,
  • Jiqiang ZHANG ,
  • Ruibin LU
Expand
  • Zhanjiang Branch of CNOOC Ltd., Zhanjiang, Guangdong 524057, China

Received date: 2020-11-25

  Online published: 2021-10-12

摘要

针对海上低渗储层微观孔隙结构认识不清,影响注水水质关键参数界限确定的问题,以涠洲11-4N油田流沙港组为例,从室内实验角度出发,通过恒速压汞实验刻画各区块储层微观孔隙结构特征,在此基础上开展注水水质实验,评价水质关键参数对储层渗流能力的影响。研究结果表明:喉道大小及分布是决定储层渗流能力的主要影响因素,渗透率与主流喉道半径有较好的幂函数关系,流一段、流三段主流喉道半径主要分布在4 μm、1 μm左右,前者流动能力较强;注入水中悬浮物颗粒粒径、颗粒质量浓度、细菌含量增加会大幅度增加注水压力,降低岩心渗透率。以储层吸水指数伤害程度20 %为下限,建立了不同渗透率级别的注水水质关键参数界限,流一段储层推荐注入海水中悬浮物颗粒质量浓度小于等于2.0 mg/L、悬浮物颗粒直径中值小于等于3.0 μm、细菌小于等于100 个/mL。据此指导注水并配合海水软化处理技术,实现了涠洲11-4N油田主力层位的有效开发。

本文引用格式

汤明光 , 刘清华 , 薛国庆 , 张芨强 , 鲁瑞彬 . 海上低渗油藏注水水质关键参数界限研究——以涠洲11-4N油田流沙港组为例[J]. 油气藏评价与开发, 2021 , 11(5) : 709 -715 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.05.007

Abstract

The unclear understanding of the micro pore structure in the offshore low permeability reservoir affects the determination of the key parameter limits of water injection quality. Therefore, water injection quality evaluation experiment is carried out based on the characterization of reservoir micro pore structure in Liushagang Formation of WZ11-4N Oilfield studied by indoor constant velocity mercury injection experiment, then to evaluate the influence of the key parameters of water quality on the seepage capability. The results show that the throat size and distribution are the main factors that determine the seepage capability of reservoir. There is a good power function relation between permeability and mainstream throat radius. The throat radius of the first section in the Liushagang Formation is about 4 μm, while 1 μm for the third section, and the former has strong flow capacity. The increase of the particle size, particle concentration and bacterial content of the suspended solids in the injected water will greatly increase the injection pressure but decrease the core permeability. Taking the damage degree of water absorption index to reservoir, 20 %, as the lower limit, the key parameter limits of injected water quality of reservoirs with different permeability levels are established. For the first section of the Liushagang Formation, the water quality of the recommended injected seawater are of the concentration that the suspended solids particles is less than or equal to 2.0 mg/L, the median diameter of suspended solid particles is less than or equal to 3.0 μm, and the number of bacteria per milliliter is less than or equal to 100. According to the guidance of these above data, the effective development of the main formation in Weizhou 11-4N Oilfield is realized by the combination of water injection and seawater softening treatment technology.

参考文献

[1] 张金庆, 杨凯雷, 梁斌. 我国海上低渗油田分类标准研究[J]. 中国海上油气, 2012, 24(6):25-27.
[1] ZHANG Jinqing, YANG Kailei, LIANG Bin. A classification of low-permeability oilfields offshore China[J]. China Offshore Oil and Gas, 2012, 24(6):25-27.
[2] 李雪. 低渗透油藏储层特征及形成机理分析[J]. 常州大学学报(自然科学版), 2015, 27(3):39-44.
[2] LI Xue. Analysis on reservoir characteristics and formation mechanism of low permeability reservoirs[J]. Journal of Changzhou University(Natural Science Edition), 2015, 27(3):39-44.
[3] 苏崇华. 海上低渗透油藏挖潜技术及其应用[J]. 石油钻采工艺, 2007, 29(6):73-76.
[3] SU Chonghua. Stimulation technology and its application to the low-permeability reservoir in offshore fields[J]. Oil drilling & production technology, 2007, 29(6):73-76.
[4] 徐文江, 谭先红, 余焱冰, 等. 海上低渗油田开发基本矛盾和主控因素研究[J]. 石油科技论坛, 2013, 32(5):12-16.
[4] XU Wenjiang, TAN Xianhong, YU Yanbing, et al. Study of basic contradictions and main controlling factors of offshore low-permeability oilfield development[J]. Petroleum Science and Technology Forum, 2013, 32(5):12-16.
[5] 袁旭军, 叶晓端, 鲍为, 等. 低渗透油田开发的难点和主要对策[J]. 钻采工艺, 2006, 29(4):31-32.
[5] YUAN Xujun, YE Xiaoduan, BAO Wei, et al. Difficulties and counter measures on low permeability reservoir development[J]. Drilling and Production Technology, 2006, 29(4):31-32.
[6] 张英芝. 特低渗透油藏开发技术研究[M]. 北京: 石油工业出版社, 2004.
[6] ZHANG Yingzhi. Research on development technology of ultra-low permeability reservoir[M]. Beijing: Petroleum Industry Press, 2004.
[7] 徐运亭. 低渗透油藏渗流机理研究及应用[M]. 北京: 石油工业出版社, 2006.
[7] XU Yunting. Study and application of percolation mechanism in low permeability reservoir[M]. Beijing: Petroleum Industry Press, 2006.
[8] 薛建强, 成友友, 王尔珍, 等. 姬塬地区长8超低渗油藏注水井欠注规律研究[J]. 科学技术与工程, 2020, 20(5):1859-1865.
[8] XUE Jianqiang, CHENG Youyou, WANG Erzhen, et al. Law of under-injection of water injection well in Chang 8 ultra-low permeability reservoir in Jiyuan area[J]. Science Technology and Engineering, 2020, 20(5):1859-1865.
[9] 吴小斌, 王志峰, 崔智林, 等. 镇北地区超低渗储层敏感性评价及机理探讨[J]. 断缺油气田, 2013, 20(2):196-200.
[9] WU Xiaobin, WANG Zhifeng, CUI Zhilin, et al. Sensitivity evaluation and mechanism discussion on ultra-low permeability reservoir in Zhenbei area[J]. Fault-Block Oil & Gas Field, 2013, 20(2):196-200.
[10] 汤明光, 刘清华, 薛国庆, 等. 海上低渗油藏大井距精细注水技术应用实践[J]. 承德石油高等专科学校学报, 2020, 22(2):11-15.
[10] TANG Mingguang, LIU Qinghua, XUE Guoqing, et al. Fine water injection technology and application practice of large well spacing in offshore low permeability reservoir[J]. Journal of Chengde Petroleum College, 2020, 22(2):11-15.
[11] 冯于恬, 唐洪明, 刘枢, 等. 渤中28-2南油田注水过程中储层损害机理分析[J]. 油田化学, 2014, 31(3):371-376.
[11] FENG Yutian, TANG Hongming, LIU Shu, et al. Analysis of reservoir damage mechanism of BZ28-2 south oilfield during water flooding[J]. Oilfield Chemistry, 2014, 31(3):371-376.
[12] BENNION D B. An overview of formation damage mechanisms causing a reduction in the productivity and injectivity of oil and gas producing formations[J]. Journal of Canadian Petroleum Technology, 2002, 41(11):29-36.
[13] ZHANG L C, LU S F, XIAO D S, et al. Characterization of full pore size distribution and its significance to macroscopic physical parameters in tight glutenites[J]. Journal of Natural Gas Science and Engineering, 2017, 38:434-449.
[14] 李道品. 低渗油田的合理井网和注采原则—低渗油田开发系列论文之二[J]. 断块油气田, 1994, 1(5):12-20.
[14] LI Daoping. Reasonable well pattern and injection production principle of low permeability oilfield[J]. Fault Block Oil and Gas Field, 1994, 1(5):12-20.
[15] 王亮. 低渗透油藏注水水质指标及采出水处理专家系统研究[D]. 成都:西南石油学院, 2004.
[15] WANG Liang. Study on water quality index of water injection and expert system of produced water treatment in low permeability reservoir[D]. Chengdu: Southwest Petroleum Institute, 2004.
[16] 王凤琴, 廖红伟, 蒋峰华, 等. 低渗油田注水能力下降原因分析及其对策研究[J]. 西安石油大学学报(自然科学版), 2009, 24(1):52-55.
[16] WANG Fengqin, LIAO Hongwei, JIANG Fenghua, et al. Cause analysis and countermeasure research of water injection capacity decline in low permeability oilfield[J]. Journal of Xi’an University of Petroleum(Natural Science Edition), 2009, 24(1):52-55.
[17] BEDRIKOVETSKY P, SILVA R M P, DAHER J S, et al. Well-data-based prediction of productivity decline due to sulphate scaling[J]. Journal of Petroleum Science and Engineering, 2009, 68(1-2):60-70.
[18] HOVADIK J M, LARUE D K. Static characterizations of reservoirs: Refining the concepts of connectivity and continuity[J]. Petroleum Geoscience, 2007, 13(3):195-211.
[19] 高奎成. 低渗油藏注水能力下降分析及解决措施[J]. 石油天然气学报, 2005, 27(3):534-535.
[19] GAO Kuicheng. Analysis of water injection capacity reduction in low permeability reservoirs and measures for solving it[J]. Journal of Oil and Gas Technology, 2005, 27(3):534-535.
[20] 谢思宇. 南海西部油田纳滤海水注水先导性应用[C]//第四届中国海油开发开采青年技术交流会论文集. 北京: 中国石化出版社, 2019:477-480.
[20] XIE Siyu. Pilot application of nanofiltration seawater injection in western South China Sea Oilfield[C]// Paper collection of the forth youth technical exchange meeting of CNOOC development and exploitation. Beijing: China Petrochemical Press, 2019: 477-480.
文章导航

/