海上油气勘探与开发

基于三维地震的浅层地质灾害评估方法——以南海某深水工区为例

  • 柯萃干 ,
  • 罗进华 ,
  • 刘双双 ,
  • 陈冠军 ,
  • 李衍峰
展开
  • 1. 中海油田服务股份有限公司,天津 300459
    2. 中国海油天然气水合物国家重点实验室,天津 300459
柯萃干(1986—),男,本科,工程师,主要从事海洋勘探、工程勘察方面工作。地址:天津市塘沽海洋高新技术开发区海川路1581号,邮政编码:300459。E-mail: kecg@cosl.com.cn

收稿日期: 2021-02-25

  网络出版日期: 2021-10-12

Shallow geohazard evaluation method based on 3D seismic: A case study of a deep-water work area in the South China Sea

  • Cuigan KE ,
  • Jinhua LUO ,
  • Shuangshuang LIU ,
  • Guanjun CHEN ,
  • Yanfeng LI
Expand
  • 1. China Oilfield Services Limited, Tianjin 300459, China
    2. State Key Laboratory of Natural Gas Hydrate, CNOOC, Tianjin 300459, China

Received date: 2021-02-25

  Online published: 2021-10-12

摘要

海上油气勘探逐渐由浅水向深水挺进,而南海深水油气资源潜力巨大。通常,深水勘探项目工程规模体量大,项目管理要求高,调查难度大。由于海洋气候环境多变、地质环境相对复杂、调查船舶和调查设备专业性强、水下定位精度要求高等因素,深水调查区域在委托技术要求、工程资金成本、作业安全风险方面显著高于浅水工区。在南海某深水工区,利用三维地震数据体的海底拾取、过井剖面、最大负振幅、地震切片等,评估工区水深、海底地貌、浅地层、断层、振幅异常等调查内容,对浅层地质情况进行灾害预测、安全评估,为目标油气矿区的水下工程设施系统的就位、安装、生产等提供指引。依据三维地震数据探究一种相对简易而实用的深海浅层地质灾害评估的方法技术,作为海上油气工程项目EPCI(设计、采办、建造、安装总承包方式)全生命周期中的组成部分,为工程计划顺利开展提供必要支撑。

本文引用格式

柯萃干 , 罗进华 , 刘双双 , 陈冠军 , 李衍峰 . 基于三维地震的浅层地质灾害评估方法——以南海某深水工区为例[J]. 油气藏评价与开发, 2021 , 11(5) : 716 -723 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.05.008

Abstract

The offshore oil and gas exploration is gradually advancing deeper. Meanwhile, the South China Sea has great potential for deep-water oil and gas resources. Generally, for the deep water exploration, the project scale is large, the requirements of the project management are high, and the investigation is difficult. Due to the factors such as the changeable marine climate environment, the relatively complex geological environment, the professional survey vessels or survey equipment, and the high requirement of underwater positioning accuracy, the commissioned technical requirements, project capital cost and operation safety risk in the deep water survey area are significantly higher than those in the shallow area. In a deep-water work area in the South China Sea, the seabed picking up, well pass section, maximum negative amplitu de and seismic slice of the 3D seismic data are used to evaluate the bathymetry, seabed topography, shallow strata, faults, amplitude anomalies and other investigation contents of the work area, so as to carry out the disaster prediction and safety assessment of the shallow geological conditions to guide the emplacement, installation and production of the underwater engineering facilities system in the target oil and gas mining area. Based on the 3D seismic data, a relatively simple and practical method for geological hazard assessment in shallow layer of the deep water is explored. As a part of the desktop research stage in the whole life cycle of EPCI (Engineering, Procurement, Construction and Installation), this method provides necessary support for the smooth development of the project plan.

参考文献

[1] 吴时国, 王吉亮. 南海神狐海域天然气水合物试采成功后的思考[J]. 科学通报, 2018, 63(1):2-8.
[1] WU Shiguo, WANG Jiliang. On the China's successful gas production test from marine gas hydrate reservoirs[J]. Chinese Science Bulletin, 2018, 63(1):2-8.
[2] 刘朝全, 姜学峰. 2019年国内外油气行业发展报告[M]. 北京: 石油工业出版社, 2020.
[2] LIU Chaoquan, JIANG Xuefeng. 2019 report on developments in the foreign and domestic oil & gas industries[M]. Beijing: Petroleum Industry Press, 2020.
[3] 王陆新, 潘继平, 杨丽丽. 全球深水油气勘探开发现状与前景展望[J]. 石油科技论坛, 2020, 39(2):31-37.
[3] WANG Luxin, PAN Jiping, YANG Lili. Present conditions and prospect of global deepwater oil and gas exploration and development[J]. Petroleum Science and Technology Forum, 2020, 39(2):31-37.
[4] 任秋月. 地震属性提取方法的研究与应用[D]. 成都:成都理工大学, 2019.
[4] REN Qiuyue. Research and application of the extraction method of seismic attributes[D]. Chengdu: Chengdu University of Technology, 2019.
[5] 郑菁苗, 李晨. 关于提高海洋石油EPCI工程项目管理能力的探讨[J]. 中国石油和化工标准与质量, 2018, 38(3):54-55.
[5] ZHENG Jingmiao, LI Chen. Discussion on improving offshore oil EPCI project management capability[J]. China Petroleum and Chemical Standard and Quality, 2018, 38(3):54-55.
[6] 叶银灿. 中国海洋灾害地质学[M]. 北京: 海洋出版社, 2012.
[6] YE Yincan. Marine hazard geology in China[M]. Beijing: China Ocean Press, 2012.
[7] 梁金强, 付少英, 陈芳, 等. 南海东北部陆坡海底甲烷渗漏及天然气水合物成藏特征[J]. 天然气地球科学, 2017, 28(5):761-770.
[7] LIANG Jinqiang, FU Shaoying, CHEN Fang, et al. Characteristics of methane seepage and gas hydrate reservoir in the northeastern slope of South China Sea[J]. Natural Gas Geoscience, 2017, 28(5):761-770.
[8] 邢磊, 海洋小多道地震高精度探测关键技术研究[D]. 青岛:中国海洋大学, 2012.
[8] XING Lei. Study of the key technologies of high-precision marine multichannel seismic survey[D]. Qingdao: Ocean University of China, 2012.
[9] 杨文达, 李斌, 张异彪. 深水油气田井场调查内容及方法技术研究[J]. 海洋石油, 2011, 31(2):1-7.
[9] YANG Wenda, LI Bin, ZHANG Yibiao. Study on well site investigation contents and techniques in deepwater oil and gas field[J]. Offshore Oil, 2011, 31(2):1-7.
[10] 吴时国, 赵汗青, 伍向阳, 等. 深水钻井安全的地质风险评价技术研究[J]. 海洋科学, 2007, 31(4):77-80.
[10] WU Shiguo, ZHAO Hanqing, WU Xiangyang, et al. The research of geohazards estimation technique on deep-water wells[J]. Marine Sciences, 2007, 31(4):77-80.
[11] 郭雯, 刘永涛, 赵俊峰, 等. 层拉平技术在地震解释中的深化应用[J]. 石油地球物理勘探, 2020, 55(5):1110-1120.
[11] GUO Wen, LIU Yongtao, ZHAO Junfeng, et al. Deepened application of horizon-flattening technique in seismic interpretation[J]. Oil Geophysical Prospecting, 2020, 55(5):1110-1120.
[12] 杨占龙. 地震地貌切片解释技术及应用[J]. 石油地球物理勘探, 2020, 55(3):669-677.
[12] YANG Zhanlong. Interpretation technique of seismic geomorphological slice and its application[J]. Oil Geophysical Prospecting, 2020, 55(3):669-677.
[13] 徐子英, 孙珍, 彭学超. 珠江口盆地白云凹陷反转构造发育特征[J]. 新疆石油地质, 2015, 36(4):394-400.
[13] XU Ziying, SUN Zhen, PENG Xuechao. Development characteristics of inverted structures in Baiyun sag in pearl river mouth basin[J]. Xinjiang Petroleum Geology, 2015, 36(4):394-400.
[14] 张功成, 杨海长, 陈莹, 等. 白云凹陷—珠江口盆地深水区一个巨大的富生气凹陷[J]. 天然气工业, 2014, 34(11):11-25.
[14] ZHANG Gongcheng, YANG Haichang, CHEN Ying, et al. The Baiyun sag: A giant rich gas-generation sag in the deepwater area of the pearl river mouth basin[J]. Natural Gas Industry, 2014, 34(11):11-25.
[15] MILKOV A V, SASSEN R. Estimate of gas hydrates resource, north western gulf of Mexico continental slope[J]. Marine Geology, 2001, 179(1):71-83.
[16] BADESAB F, DEWANGAN P, USAPKAR A, et al. Controls on evolution of gas-hydrate system in the Krishna-Godavari basin, offshore India[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(1):52-74.
[17] 易远元, 唐海雄. 海洋深水钻井浅层地质灾害识别技术及案例分析[M]. 北京: 石油工业出版社, 2012.
[17] YI Yuanyuan, TANG Haixiong. Marine deepwater drilling shallow geological hazard identification technology and case analysis[M]. Beijing: Petroleum Industry Press, 2012.
[18] 刘冰. 涠西区块3D浅层高分辨率处理技术[J]. 海洋石油, 2016, 36(2):7-11.
[18] LIU Bing. High-resolution processing of shallow 3D seismic data in the Weixi block[J]. Offshore Oil, 2016, 36(2):7-11.
[19] ADVOCATE D M, HOOD K C. An empirical time-depth model for calculating water depth southern gulf of mexico[J]. Geo-Marine Letters, 1993, 13(4):207-211.
[20] 汪俊, 徐子英, 任卫波. 复杂沉积区地震剖面时深转换的多公式拟合方案及应用[J]. 物探与化探, 2020, 44(1):149-155.
[20] WANG Jun, XU Ziying, REN Weibo. The time to depth conversion based on multi-functions fitting solution and its application to complicated sedimentary area[J]. Geophysical and Geochemical Exploration, 2020, 44(1):149-155.
[21] 沙志彬. 南海东北部海域XN区块天然气水合物资源综合预测与评价[D]. 北京:中国地质大学, 2019.
[21] SHA Zhibin. Integrated prediction and evaluation for natural gas hydrate resource of XN study area in the northeastern South China Sea[D]. Beijing: China University of Geosciences, 2019.
[22] 孙甜甜, 邬黛黛, 潘梦迪, 等. 南海北部琼东南盆地浅表层沉积物的地球化学特征及对沉积环境的指示[J]. 热带海洋学报, 2018, 37(4):70-80.
[22] SUN Tiantian, WU Daidai, PAN Mengdi, et al. Geochemical characteristics of surface sediments in the southern Qiongdongnan basin of the northern south China sea and its implication for sedimentary environment[J]. Journal of Tropical Oceanography, 2018, 37(4):70-80.
[23] MOAN T. Life cycle structural integrity management of offshore structures[J]. Structure and Infrastructure Engineering, 2018, 14(7):911-927.
文章导航

/