海上油气勘探与开发

渤海J油田高含水后期压裂井选井选层研究及应用

  • 闫建丽 ,
  • 颜冠山 ,
  • 谷志猛 ,
  • 别梦君 ,
  • 张振杰
展开
  • 中海石油(中国)有限公司天津分公司渤海石油研究院,天津 300459
闫建丽(1981—),女,硕士,高级工程师,从事油气田开发工作。地址: 天津市滨海新区海川路2121号渤海石油管理局B座,邮政编码:300459。E-mail: yanjl2@cnooc.com.cn

收稿日期: 2021-05-13

  网络出版日期: 2021-10-12

基金资助

中海石油(中国有限公司综合科研项目“渤海双高油田挖潜关键技术研究”YXKY-2018-TJ-04)

Selection of fracturing wells and layers of Bohai J Oil Field in the late stage of high water cut and its application

  • Jianli YAN ,
  • Guanshan YAN ,
  • Zhimeng GU ,
  • Mengjun BIE ,
  • Zhenjie ZHANG
Expand
  • Bohai Oilfield Research Institute, Tianjin Branch of CNOOC Limited, Tianjin 300459, China

Received date: 2021-05-13

  Online published: 2021-10-12

摘要

针对海上聚驱油田高含水后期剩余油分布复杂及油井压裂选井、选层难度大等问题,综合运用改进后的无因次产液指数计算方法评价油井产液能力,分析了聚驱后油井合理产液变化规律,进而选择无因次产液指数下降幅度大于30 %的亟须治理的油井;结合储层精细分析、剩余油精细刻画,进行了高含水后期油藏驱替倍数量化表征和分级评价,有效量化了各层的剩余潜力,建立了渤海J油田高含水后期压裂措施的合理选井、选层的方法和量化依据,保障了海上压裂技术的增油效果。矿场实践表明,该技术方法合理有效,压裂措施实施后单井日增油可达14~42 t,增油效果显著,可为类似处于高含水后期的油田的压裂措施选择及产能改造潜力评价提供借鉴。

本文引用格式

闫建丽 , 颜冠山 , 谷志猛 , 别梦君 , 张振杰 . 渤海J油田高含水后期压裂井选井选层研究及应用[J]. 油气藏评价与开发, 2021 , 11(5) : 736 -743 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.05.011

Abstract

After the long-term water and polymer flooding, the remaining oil distribution in the late stage of high water cut is complex, and it is difficult to select fracturing wells and layers. In order to solve these problems, an improved calculation method of the dimensionless liquid production index for wells in polymer flooding oilfields is proposed to evaluate the production capability and changes, then the wells that the dimensionless liquid production index dropped more than 30 % are selected. At the same time, combined with the fine geology and reservoir analysis, the quantitative characterization of displacement multiple in the late stage of high water cut is studied and the remaining oil for each layer is evaluated. At last, the method of selecting fracturing well and layer in Bohai J Oil Field is established. Field applications showed that this method was reasonable and effective, the oil production incremental for each well after fracturing is about 14 to 42 tons. It can also provide reference for the selection of fracturing measures and the evaluation of well stimulation potential of similar oilfields in the late stage of high water cut.

参考文献

[1] 邓建明. 渤海油田低产低效井综合治理技术体系现状及展望[J]. 中国海上油气, 2020, 32(3):111-117.
[1] DENG Jianming. Status and prospect of comprehensive treatment technologies for low production and low efficiency wells in Bohai oilfield[J]. China Offshore Oil and Gas, 2020, 32(3):111-117.
[2] 王坤, 吴增智, 邹鸿江. 海上中高渗储层压裂工艺技术研究与实践[J]. 钻采工艺, 2016, 39(6):54-57.
[2] WANG Kun, WU Zengzhi, ZOU Hongjiang. Research on fracturing technique for mid-high permeability reservoir offshore and its application[J]. Drilling & Production Technology, 2016, 39(6):54-57.
[3] 马英文, 韩耀图. 中国海上油田射孔技术应用现状及展望[J]. 中国海上油气, 2020, 32(6):108-115.
[3] MA Yingwen, HAN Yaotu. Status and prospect of perforating technology in China offshore oilfields[J]. China Offshore Oil and Gas, 2020, 32(6):108-115.
[4] 崔传智, 杨经纬, 吴忠维, 等. 高含水期五点法压裂井网的动态产能预测方法[J]. 油气地质与采收率, 2019, 26(3):78-84.
[4] CUI Chuanzhi, YANG Jingwei, WU Zhongwei, et al. Dynamic productivity prediction method of five-spot fractured well pattern in high water cut stage[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(3):78-84.
[5] 杨乾隆, 令永刚, 赵小光, 等. 裂缝型砂岩油藏高含水井化学堵水压裂技术研究及应用[J]. 钻采工艺, 2020, 43(5):57-60.
[5] YANG Qianlong, LING Yonggang, ZHAO Xiaoguang, et al. Research and application of chemical water shutoff fracturing technology for high water cut wells in fractured sandstone[J]. Drilling & Production Technology, 2020, 43(5):57-60.
[6] 张文, 王禄春, 郭玮琪, 等. 特高含水期水驱油井压裂潜力研究[J]. 岩性油气藏, 2012, 24(4):115-120.
[6] ZHANG Wen, WANG Luchun, GUO Weiqi, et al. Study on fracturing potential of water driving oil wells in extra-high water cut stage[J]. Lithologic Reservoirs, 2012, 24(4):115-120.
[7] 任佳伟, 王贤君, 张先敏, 等. 大庆致密油藏水平井重复压裂及裂缝参数优化模拟[J]. 断块油气田, 2020, 27(5):638-642.
[7] REN Jiawei, WANG Xianjun, ZHANG Xianmin, et al. Refracturing and fracture parameters optimization simulation for horizontal well in Daqing tight oil reservoir[J]. Fault-Block Oil & Gas Field, 2020, 27(5):638-642.
[8] 詹耀华, 鲁明晶, 毕曼, 等. 基于多因素关联体系的重复压裂选井选层方法研究及应用[J]. 钻采工艺, 2020, 43(2):78-81.
[8] ZHAN Yaohua, LU Mingjing, BI Man, et al. Research and application of re-fracturing candidate selection method based on multi factor association system[J]. Drilling & Production Technology, 2020, 43(2):78-81.
[9] 王振宇, 林伯韬, 于会永, 等. 克拉玛依油田七区八道湾组砂砾岩油藏地应力特征[J]. 新疆石油地质, 2020, 41(3):314-320.
[9] WANG Zhenyu, LIN Botao, YU Huiyong, et al. Characteristics of in-situ stress in sandy conglomerate reservoir of Badaowan formation in district No. 7, Karamay oilfield[J]. Xinjiang Petroleum Geology, 2020, 41(3):314-320.
[10] 姜颜波, 刘璐, 元福卿, 等. 聚合物/降黏剂复合驱产液能力动态预测方法[J]. 油气地质与采收率, 2020, 27(3):91-99.
[10] JIANG Yanbo, LIU Lu, YUAN Fuqing, et al. Dynamic prediction method of liquid production capacity in polymer/viscosity reducer compound flooding[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(3):91-99.
[11] 王晓超, 王锦林, 张维易, 等. 渤海S油田聚合物驱合理产液指数降幅研究[J]. 大庆石油地质与开发, 2018, 3(37):104-108.
[11] WANG Xiaochao, WANG Jinlin, ZHANG Weiyi, et al. Study on the reasonable reduction degree of the liquid production index for polymer-flooded Bohai oilfields[J]. Petroleum Geology and Oilfield Development in Daqing, 2018, 3(37):104-108.
[12] 何春百, 王大威, 未志杰, 等. 聚合物驱产液指数变化物理模拟实验[J]. 科学技术与工程, 2017, 17(34):210-214.
[12] HE Chubai, WANG Dawei, WEI Zhijie, et al. Physical simulation experiment of polymer flooding liquid productivity index variation[J]. Science Technology and Engineering, 2017, 17(34):210-214.
[13] 周丛丛, 崔长玉, 郭松林. 聚合物驱生产井流压特征规律分析及影响因素研究[J]. 特种油气藏, 2019, 26(5):112-117.
[13] ZHOU Congcong, CUI Changyu, GUO Songlin. Flowing pressure performance analysis and its influencing factors in polymer flooding production well[J]. Special Oil and Gas Reservoirs, 2019, 26(5):112-117.
[14] 郭敏. 聚合物驱后油藏合理产液水平研究[D]. 青岛: 中国石油大学(华东), 2011:22-32.
[14] GUO Min. The studies on liquid production of subsequent water flooding of polymer flooding[D]. Qingdao: China University of Petroleum(East China), 2011:22-32.
[15] 谷建伟, 孔令瑾, 刘志宏, 等. 考虑流体分布差异的无因次采液指数计算方法[J]. 特种油气藏, 2015, 22(2):78-80.
[15] GU Jianwei, KONG Lingjin, LIU Zhihong, et al. Dimensionless fluid productivity index calculation considering fluid distribution difference[J]. Special Oil and Gas Reservoirs, 2015, 22(2):78-80.
[16] 颜冠山, 刘宗宾, 宋洪亮, 等. 海上三角洲相油田剩余油控制因素及挖潜——以渤海湾盆地JZ油田为例[J]. 断块油气田, 2016, 23(5):592-594.
[16] YAN Guanshan, LIU Zongbin, SONG Hongliang, et al. Remainning oil control factors and potential digging in offshore delta oilfield: taking JZ Oilfield in Bohai Bay Basin as an example[J]. Fault-Block Oil & Gas Field, 2016, 23(5):592-594.
[17] 刘超, 李云鹏, 刘宗宾, 等. 渤海湾盆地S油田三角洲相储层隔夹层及剩余油挖潜研究[J]. 西安石油大学学报(自然科学版), 2017, 32(3):26-33.
[17] LIU Chao, LI Yunpeng, LIU Zongbin, et al. Research on interlayers and remaining oil of delta facies reservoir in S oilfield, Bohai bay basin[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2017, 32(3):26-33.
[18] 颜冠山, 刘宗宾, 宋洪亮, 等. 多层构造油藏纵向细分计算单元对储量参数及结果的影响[J]. 地质与资源, 2020, 29(4):342-350.
[18] YAN Guanshan, LIU Zongbin, SONG Hongliang, et al. Effect of vertical subdivision of computing units on reserve parameters and results of multilayer structural reservoir[J]. Geology and Resources, 2020, 29(4):342-350.
[19] 陶光辉, 李洪生, 刘斌. 特高含水期驱替倍数量化表征及调整对策[J]. 油气地质与采收率, 2019, 26(3):129-133.
[19] TAO Guanghui, LI Hongsheng, LIU bin. Quantitative characterization of displacement multiple and adjustment countermeasures in ultra-high water cut stage[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(3):129-133.
[20] 吴晓慧. 大庆长垣油田特高含水期水驱精细挖潜措施后产量变化规律[J]. 大庆石油地质与开发, 2018, 37(5):71-75.
[20] WU Xiaohui. Changed laws of the production after waterflooding finely-tapped-potential stimulations for Daqing Placanticline Oil-fields at the stage of extra-high watercut[J]. Petroleum Geology and Oilfield Development in Daqing, 2018, 37(5):71-75.
[21] 宫红茹, 唐顺卿, 胡志成. 胡状集油田特高含水油藏剩余油水驱技术[J]. 石油钻探技术, 2018, 46(5):95-101.
[21] GONG Hongru, TANG Shunqing, HU Zhicheng. Water flooding technology for the residual oil in the ultra-high water cut oil reservoirs of the Huzhuangji Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(5):95-101.
文章导航

/