综合研究

塔里木盆地巴西改组岩石理化性能及力学特性研究

  • 万有维 ,
  • 刘向君 ,
  • 袁芳 ,
  • 熊健 ,
  • 李超
展开
  • 1. 西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500
    2. 中国石油塔里木油田分公司勘探开发研究院,新疆 库尔勒 841000
万有维(1996—),男,在读博士研究生,主要从事石油工程测井相关方面研究。地址:四川省成都市新都区新都大道8号西南石油大学,邮政编码:610500。E-mail: swpu_wyw@163.com

收稿日期: 2020-07-09

  网络出版日期: 2021-10-12

基金资助

国家自然科学基金项目“富有机质硬脆性页岩水化机理基础研究”(41772151)

Physic-chemical and mechanical properties of rocks in Baxigai Formation, Tarim Basin

  • Youwei WAN ,
  • Xiangjun LIU ,
  • Fang YUAN ,
  • Jian XIONG ,
  • Chao LI
Expand
  • 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    2. Exploration and Development Research Institute, PetroChina Tarim Oilfield Company, Korla, Xinjiang 841000, China

Received date: 2020-07-09

  Online published: 2021-10-12

摘要

塔里木盆地克拉苏构造带巴西改组地层在钻井过程中井壁失稳现象频发,严重影响钻井效率。以巴西改组岩石为研究对象,开展了矿物组成测试、阳离子交换实验等理化性能测试,以及三轴压缩试验等力学测试,研究了巴西改组砂岩与泥岩理化性能、力学特性差异以及钻井液浸泡对力学性能的影响。研究结果表明,巴西改组泥岩的黏土矿物含量较高,阳离子交换容量约为砂岩的3倍,并发育大量微裂缝,水化膨胀能力明显强于砂岩,在溶液浸泡作用下更容易发生结构损伤。同时,由于油基钻井液的润滑作用,导致强度降低,且泥岩强度降低量约为砂岩的1.5倍。在相同围压状态下,巴西改组泥岩与砂岩的强度、临界破坏点处对应的轴向、径向应变以及岩石破坏模式均存在差异,且钻井液浸泡对泥岩强度影响大于砂岩。通过分析巴西改组地层岩石力学特性,对弄清该地层井壁失稳机理、制定井壁失稳防控措施具有重要意义。

本文引用格式

万有维 , 刘向君 , 袁芳 , 熊健 , 李超 . 塔里木盆地巴西改组岩石理化性能及力学特性研究[J]. 油气藏评价与开发, 2021 , 11(5) : 753 -759 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.05.013

Abstract

During the drilling process, the wellbore instability frequently occurres in Baxigai Formation in the Kelasu structural belt of the Tarim Basin, which seriously affects the drilling efficiency. In order to study the physic-chemical and mechanical mechanical properties properties, differences of physical and pechanical characteristics and influence of drilling fluid immersion on the mechanical properties of the sandstone and mudstone in Baxigai Formation, the physic-chemical characteristic tests (such as mineral composition test and cation exchange experiment), and mechanical test (such as triaxial compression test) have been carried out. The research results show that the clay minerals content of mudstone in Baxigai Formation is high, and the cation exchange capacity is about three times that of sandstone. The mudstone here also has a large number of micro-cracks, and the hydration swelling is obviously stronger than that of sandstone. All these things make it m ore prone to be damaged. At the same time, the strength decreases under the immersion and lubricating effects of oil-based drilling fluid. The strength decrease of mudstone is about 1.5 times that of sandstone. Under the same confining pressure, the mudstone and sandstone strength, the corresponding axial and radial strain at the critical failure point, and the rock damage mode of mudstone and sandstone in Baxigai Formation are different. The damage to mudstone structure caused by drilling fluid immersion is greater than that of sandstone. The analysis of the mechanical properties of the rock in Baxigai Formation is of great significance to clarify the mechanism of wellbore instability in this formation and formulate prevention and control measures for wellbore instability.

参考文献

[1] 杨海军, 李勇, 唐雁刚, 等. 塔里木盆地克拉苏盐下深层大气田的发现[J]. 新疆石油地质, 2019, 40(1):12-20.
[1] YANG Haijun, LI Yong, TANG Yangang, et al. Discovery of deep gas field under the Krasu Salt in Tarim Basin[J]. Xinjiang Petroleum Geology, 2019, 40(1):12-20.
[2] 王招明. 塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律[J]. 天然气地球科学, 2014, 25(2):153-166.
[2] WANG Zhaoming. Formation mechanism and enrichment regularities of Kelasu subsalt deep large gas field in Kuqa depression, Tarim Basin[J]. Natural Gas Geoscience, 2014, 25(2):153-166.
[3] 孙宁富, 郭凤霞. 大北—克拉苏构造带盐下天然气识别[J]. 复杂油气藏, 2014, 7(3):20-23.
[3] SUN Ningfu, GUO Fengxia. Natural gas identification under evaporate bed of Dabei-Kelasu tectonic belt[J]. Complex Hydrocarbon Reservoirs, 2014, 7(3):20-23.
[4] 华松, 常洪超, 尹付国, 等. 东胜气田锦58井区井塌原因分析及钻井液认识[J]. 石油地质与工程, 2020, 34(4):102-105.
[4] HUA Song, CHANG Hongchao, YIN Fuguo, et al. Causes analysis of well collapse and understanding of drilling fluid in Jin58 well area of Dongsheng gas field[J]. Petroleum Geology & Engineering, 2020, 34(4):102-105.
[5] 王翔. 鄂尔多斯盆地西部页岩油水平井井壁稳定技术[J]. 石油地质与工程, 2019, 33(4):88-91.
[5] WANG Xiang. Wellbore stability technique in horizontal wells for shale oil reservoirs in western Ordos Basin[J]. Petroleum Geology & Engineering, 2019, 33(4):88-91.
[6] 董萌. 克拉苏构造盐膏层钻井提速措施研究与应用[D]. 成都:西南石油大学, 2017.
[6] DONG Meng. Research and application of drilling speed-up measures for Krassu structural salt paste layer[D]. Chengdu: Southwest Petroleum University, 2017.
[7] YAGIZ S. Assessment of brittleness using rock strength and density with punch penetration test[J]. Tunnellingand Underground Space Technology, 2009, 24(1):66-74.
[8] 韩超超. 陇东地区长7储层岩石力学特性试验研究[D]. 西安:西安石油大学, 2016.
[8] HAN Chaochao. Experimental study on rock mechanical properties of Chang 7 reservoir in Longdong area[D]. Xi’an: Xi’an Shiyou University, 2016.
[9] 牛贯非, 李连崇, 李明, 等. 基于数值模拟的储层岩石力学参数预测模型分析及应用[J]. 油气地质与采收率, 2017, 24(2):73-79.
[9] NIU Guanfei, LI Lianchong, LI Ming, et al. Analysis and application of reservoir rock mechanical parameter prediction model based on numerical simulation[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(2):73-79.
[10] 骆韬, 郭保华, 焦峰, 等. 水化学作用对砂岩力学性质影响试验研究[J]. 地下空间与工程学报, 2019, 15(5):1316-1322.
[10] LUO Tao, GUO Baohua, JIAO Feng, et al. Experimental study on the influence of water chemistry on the mechanical properties of sandstone[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(5):1316-1322.
[11] 向朝纲, 陈俊斌, 杨刚. 钻井液浸泡作用下脆性页岩强度特征实验[J]. 断块油气田, 2018, 25(6):803-806.
[11] XIANG Chaogang, CHEN Junbin, YANG Gang. Experimental study on strength characteristics of brittle shale under drilling fluid soaking[J]. Fault-Block Oil & Gas Field, 2018, 25(6):803-806.
[12] WYERING L D, VILLENEUVE M C, WALLIS I C, et al. Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand[J]. Journal of Volcanology and Geothermal Research, 2014, 288:76-93.
[13] FROLOVA J, LADYGIN V, RYCHAGOV S, et al. Effects of hydrothermal alterations on physical and mechanical properties of rocks in the Kuril-Kamchatka island arc[J]. Engineering Geology, 2014, 183:80-95.
[14] HE S, LIANG L X, ZENG Y J, et al. The influence of water-based drilling fluid on mechanical property of shale and the wellbore stability[J]. Petroleum, 2016, 2(1).
[15] 刘厚彬, 张帆, 孟英峰, 等. 焦石坝地区页岩气水平钻井井壁稳定性实验研究[J]. 地下空间与工程学报, 2017, 13(6):1531-1536.
[15] LIU Houbin, ZHANG Fan, MENG Yingfeng, et al. Experimental study on shale gas horizontal wellbore stability in Jiaoshiba area[J]. Journal of Underground Space and Engineering, 2017, 13(6):1531-1536.
[16] 刘向君, 罗平亚. 测井在井壁稳定性研究中的应用及发展[J]. 天然气工业, 1999(6):33-35.
[16] LIU Xiangjun, LUO Pingya. Application and development of logging in wellbore stability research[J]. Natural Gas Industry, 1999(6):33-35.
[17] 丁乙, 刘向君, 罗平亚, 等. 硬脆性泥页岩地层井壁稳定性研究[J]. 中国海上油气, 2018, 30(1):142-149.
[17] DING Yi, LIU Xiangjun, LUO Pingya, et al. Study on the stability of hard and brittle shale formation wall[J]. China Offshore Oil and Gas, 2018, 30(1):142-149.
[18] 高志勇, 冯佳睿, 周川闽, 等. 干旱气候环境下季节性河流沉积特征——以库车河剖面下白垩统为例[J]. 沉积学报, 2014, 32(6):1060-1071.
[18] GAO Zhiyong, FENG Jiarui, ZHOU Chuanmin, et al. Sedimentary characteristics of seasonal rivers in an arid climate environment: A case study of the Lower Cretaceous in the Kuqa River profile[J]. Acta Sedimentologica Sinica, 2014, 32(6):1060-1071.
[19] 贾彪, 邓明毅, 罗淑红, 等. 鄯善、丘陵、温吉桑、米登构造岩石矿物组分和理化性能及钻井液技术的研究[J]. 西安石油学院学报(自然科学版), 1994(S1):57-67.
[19] JIA Biao, DENG Mingyi, LUO Shuhong, et al. Study on the mineral composition, physical and chemical properties and drilling fluid technology of rock formations in Shanshan, Qiuling, Wenjisang and Midang[J]. Journal of Xi’an Petroleum Institute(Natural Science Edition), 1994(S1):57-67.
[20] 刘厚彬, 崔帅, 朱达江, 等. 硬脆性页岩微细观组构及力学性能研究[J]. 地下空间与工程学报, 2019, 15(S1):34-39.
[20] LIU Houbin, CUI Shuai, ZHU Dajiang, et al. Study on Microstructure and Mechanical Properties of Hard Brittle Shale[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(S1):34-39.
文章导航

/