油气藏评价与开发 >
2021 , Vol. 11 >Issue 6: 812 - 822
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2021.06.003
胜利油田CCUS技术及应用
收稿日期: 2021-08-30
网络出版日期: 2021-12-31
基金资助
中国石化科技攻关项目“滩坝砂低渗透油藏CO2气水交替驱提高采收率技术”(P20070-2)
CCUS and its application in Shengli Oilfield
Received date: 2021-08-30
Online published: 2021-12-31
以CO2排放为核心的气候变化和以石油资源紧缺为核心的能源安全是制约我国社会经济可持续发展的两个重大难题。胜利油田针对CO2捕集和大幅度提高低渗透油藏采收率的技术瓶颈开展攻关研究,形成了CO2捕集、长距离安全输送、油藏工程优化设计、注采工艺设计、地面集输设计和驱油与环境监测等配套技术,建成了工业规模的燃煤电厂烟气CO2捕集、驱油与地下封存全流程示范工程。工业化测试表明,开发的基于新型多氨基CO2捕集溶剂(MSA)的捕集技术比传统的乙醇胺CO2捕集溶剂(MEA)捕集技术成本降低35 %,高89-1区块累计注入液态CO2 31×104 t,累增油8.6×104 t,封存CO2 28×104 t,中心井区已提高采收率9.5 %,预计提高采收率可达到17.2 %。
张宗檩 , 吕广忠 , 王杰 . 胜利油田CCUS技术及应用[J]. 油气藏评价与开发, 2021 , 11(6) : 812 -822 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.06.003
Climate change centering on carbon dioxide(CO2) emissions and energy security centering on the shortage of oil resources are two major problems restricting the sustainable development of China's social economy. In order to solve the bottleneck of both the CO2 capture and the great improvement of recovery factor of low permeability reservoir, the related technology researches have been carried out in Shengli Oilfield, forming the supporting technologies such as CO2 capture, safe long-distance transmission, reservoir engineering optimization design, the injection-production process design, design of surface gathering and oil displacement and environmental monitoring, and building an industrial-scale demonstration project for flue gas CO2 capture, oil displacement and underground storage of coal-fired power plants. The industrial tests show that the cost of the new MSA technology is 35 % lower than that of the traditional MEA technology. Over 31×104 t of CO2 have successfully been injected into the reservoir, with the cumulative oil increment of 8.6×104 t, and 28×104 t of CO2 storaged in G89-1 block. The central well area has increased the recovery rate by 9.5 %, and the recovery rate is expected to reach 17.2 %.
Key words: CO2 emissions; CO2 capture; CO2 flooding; CO2 storage; enhance oil recovery(EOR)
[1] | 程耀华, 杜尔顺, 田旭, 等. 电力系统中的碳捕集电厂:研究综述及发展新动向[J]. 全球能源互联网, 2020, 3(4):339-343. |
[1] | CHENG Yaohua, DU Ershun, TIAN Xu, et al. Carbon capture power plants in power systems: review and latest research trends[J]. Journal of Global Energy interconnection, 2020, 3(4):339-343. |
[2] | 张九天, 张璐. 面向碳中和目标的碳捕集、利用与封存发展初步探讨[J]. 热力发电, 2021, 50(1):1-6. |
[2] | ZHANG Jiutian, ZHANG Lu. Preliminary discussion on development of carbon capture, utilization and storage for carbon neutralization[J]. Thermal Power Generation, 2021, 50(1):1-6. |
[3] | 时飞, 李奕帆. 混合基质膜在碳捕集领域的研究进展[J]. 化工进展, 2020, 39(6):2453-2462. |
[3] | SHI Fei, LI Yifan. Advances of mixed matrix membrane for CO2 capture, Chemical Industry and Engineering Progress 2020, 39(6):2453-2462. |
[4] | 余子炎. 燃煤电厂CO2捕集、利用和封存与“捕集预留”分析[J]. 全面腐蚀控制, 2019, 33(11):8-10. |
[4] | YU Ziyan. Coal-fired power plant carbon capture, use and storage and "trap set aside" analysis[J]. Total Corrosion Control, 2019, 33(11):8-10. |
[5] | 杨胜, 张显娟, 逯鹏, 等. PBI膜在CO2捕集方面的研究进展[J]. 膜科学与技术, 2019, 39(6):150-156. |
[5] | YANG Sheng, ZHANG Xianjuan, LU Peng, et al. Recent advances in polybenzimidazole(PBI) membranes for CO2 capture[J]. Membrane Science and Technology, 2019, 39(6):150-156 |
[6] | 秦积舜, 韩海水, 刘晓蕾. 美国CO2驱油技术应用及启示[J]. 石油勘探与开发, 2015, 42(2):209-216. |
[6] | QIN Jishun, HAN Haishui, LIU Xiaolei. Application and enlightenment ofcarbon dioxide flooding in the United States of America[J]. Petroleum Exploration and Development, 2015, 42(2):209-216. |
[7] | 李士伦, 周守信, 杜建芬, 等. 国内外注气提高石油采收率技术回顾与展望[J]. 油气地质与采收率, 2002, 9(2):1-5. |
[7] | LI Shilun, ZHOU Shouxin, DU Jianfen, et al. Review and prospects for the development of EOR by gas injection at home and abroad[J]. Petroleum Geology and Recovery Efficiency, 2002, 9(2):1-5. |
[8] | TABER J J, MARTIN F D, SERIGHT R S. EOR screening criteria revisited - Part 1: Introduction to screening criteria and enhanced recovery field projects[J]. SPE Reservoir Engineering, 1997, 12(3):189-198. |
[9] | Jarrell P M, Fox C, Michael H. Stein, PRACTICAL ASPECTS OF CO2 FLOODING. Society of Petroleum Engineers Inc., 2002. |
[10] | 张本艳, 周立娟, 何学文, 等. 鄂尔多斯盆地渭北油田长3储层注CO2室内研究[J]. 石油地质与工程, 2018, 32(3):87-90. |
[10] | ZHANG Benyan, ZHOU Lijuan, HE Xuewen, et al. A laboratory study on CO2 injection of Chang 3 reservoir of Weibei oilfield in Ordosbasin[J]. Petroleum Geology & Engineering, 2018, 32(3):87-90. |
[11] | 廖洪. S油藏注CO2提高采收率技术[D]. 成都:西南石油大学, 2017. |
[11] | LIAO Hong. The EOR study of CO2 injection in S reservoir[D]. Chengdu: Southwest Petroleum University, 2017. |
[12] | 李孟涛, 杨广清, 李洪涛. CO2混相驱驱油方式对榆树林油田采收率影响研究[J]. 石油地质与工程, 2007, 21(4):52-54. |
[12] | LI Mengtao, YANG Guangqing, LI Hongtao. Study of the influence of CO2 miscible displacement on enhanced oil recovery in Yushulin oilfield[J]. Petroleum Geology and Engineering, 2007, 21(4):52-54. |
[13] | 杨勇. 胜利油田特低渗透油藏CO2驱技术研究与实践[J]. 油气地质与采收率, 2015, 22(6):41-46. |
[13] | YANG Yong. Research and application of CO2 flooding technology in extra-low permeability reservoirs of Shengli Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1):11-19. |
[14] | 曹绪龙, 吕广忠, 王杰, 等. 滩坝砂特低渗透油藏CO2驱油技术及应用[J]. 油气藏评价与开发, 2019, 9(3):41-46. |
[14] | CAO Xulong, LYU Guangzhong, WANG Jie, et al. Technology and application of CO2 flooding in ultra-low permeability beach-bar sand reservoir[J]. Reservoir Evaluation and Development, 2019, 9(3):41-46. |
[15] | 曹绪龙, 吕广忠, 王杰, 等. 胜利油田CO2驱油技术现状及下步研究方向[J]. 油气藏评价与开发, 2020, 10(3):51-59. |
[15] | CAO Xulong, LYU Guangzhong, WANG Jie, et al. Present situation and further research direction of CO2 flooding technology in Shengli Oilfield[J]. Reservoir Evaluation and Development, 2020, 10(3):51-59. |
[16] | 陆诗建, 孟晓锋, 高丽娟, 等. 压缩式热泵回收CO2捕集解吸塔废热节能工艺研究[J]. 山东化工, 2019, 48(13):213-217. |
[16] | LU Shijian, MENG Xiaofeng, GAO Lijuan, et al. Study on energy-saving technology for recovering waste heat from CO2 capture and desorption tower by compressed heat pump[J]. Shandong Chemical Industry, 2019, 48(13):213-217. |
[17] | 李志鹏. 东营凹陷高89地区CO2驱油及封存过程中断层纵向安全性评价体系[J]. 油气地质与采收率, 2015, 22(6):41-46. |
[17] | LI Zhipeng. Evaluation on vertical safety of fault during carbon dioxide flooding and sequestration in the Gao89 area of Dongying sag[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(6):41-46. |
[18] | 国殿斌, 徐怀民. 深层高压低渗油藏 CO2驱室内实验研究——以中原油田胡96块为例[J]. 石油实验地质, 2014, 36(1):102-105. |
[18] | GUO Dianbin, XU Huaimin. Laboratory experiments of CO2 flooding in deep-buried high-pressure low-permeability reservoirs: Acase study of block Hu96 in Zhongyuan Oilfield[J]. Petroleum Geology & Experiment, 2014, 36(1):102-105. |
[19] | 姜洪福, 雷友忠, 熊霄, 等. 大庆长垣外围特低渗透扶杨油层CO2非混相驱油试验研究[J]. 现代地质, 2008, 22(4):659-663. |
[19] | JIANG Hongfu, LEI Youzhong, XIONG Xiao, et al. An CO2 immiscible displacement experimental study aiming at fuyang extra-low permeability layer at peripheral of daqing placanticline[J]. Geoscience, 2008, 22(4):659-663. |
[20] | 邓瑞健, 田巍, 李中超, 等. CO2驱动用储层微观界限研究[J]. 特种油气藏, 2019, 26(3):133-137. |
[20] | DENG Ruijian, TIAN Wei, LI Zhongchao, et al. Microscopic limits of reservoir producing for carbon dioxide flooding[J]. Special Oil& Gas Reservoirs, 2019, 26(3):133-137. |
/
〈 | 〉 |