方法理论

低渗高凝油藏CO2复合驱提高采收率机理实验研究

  • 陈世杰 ,
  • 潘毅 ,
  • 孙雷 ,
  • 司勇 ,
  • 梁飞 ,
  • 高丽
展开
  • 1.西南石油大学油气藏地质与开发工程国家重点实验室,四川 成都 610500
    2.中国石油辽河油田分公司勘探开发研究院,辽宁 盘锦 124000
陈世杰(1994—),男,在读硕士研究生,注气提高采收率及油气藏流体相态研究。地址:四川省成都市新都区新都大道8号西南石油大学,邮政编码:610500。E-mail: 1739176605@qq.com

收稿日期: 2020-09-25

  网络出版日期: 2021-12-31

基金资助

中国石油科技重大专项“稀油高凝油大幅度提高采收率关键技术研究与应用”(2017E-1603)

Mechanism of enhanced oil recovery by CO2 combination flooding in low permeability and high pour-point reservoir

  • Shijie CHEN ,
  • Yi PAN ,
  • Lei SUN ,
  • Yong SI ,
  • Fei LIANG ,
  • Li GAO
Expand
  • 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    2. Exploration and Development Research Institute of PetroChina Liaohe Oilfield Company, Panjin, Liaoning 124000, China

Received date: 2020-09-25

  Online published: 2021-12-31

摘要

为有效解决S358高凝油藏注气难度大、压裂后气驱流度比过大容易气窜导致驱油效率低的问题,开展了室内注气相态及长岩心驱替机理实验。通过地层条件下高凝油注CO2、干气、烟道气、减氧空气(N2 90 %+O2 10 %)PVT相态实验,分析了4种注入气与高凝油接触的增溶膨胀、降黏、降低界面张力等特性机理,优选了CO2作为注入气。通过5组不同复合方式的高温高压长岩心驱替实验,评价了CO2复合驱油防窜提采效果。实验结果表明,CO2+弱凝胶、CO2+泡沫的驱替效果最好,最终驱油效率分别为70.101 %、68.212 %。研究结果说明,CO2复合驱段塞的注入使得驱替阻力增大,导致裂缝导流能力降低,对改善微观波及体积起到关键性作用。其中,CO2+弱凝胶、CO2+泡沫的驱替方式提采效果最佳,研究结果可为该区块高凝油的高效开发提供实验基础。

本文引用格式

陈世杰 , 潘毅 , 孙雷 , 司勇 , 梁飞 , 高丽 . 低渗高凝油藏CO2复合驱提高采收率机理实验研究[J]. 油气藏评价与开发, 2021 , 11(6) : 823 -830 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.06.004

Abstract

In order to effectively solve the problems of difficult gas injection in S358 high pour-point reservoir and low oil displacement efficiency caused by gas channeling due to high mobility ratio of gas flooding after fracturing, laboratory experiments of gas injection phase and long core displacement mechanism have been carried out. Through the PVT phase state experiment of the high pour-point oil injected by CO2, dry gas, flue gas, and oxygen-reduced air(N2 90 %+O2 10 %)under the formation conditions, the characteristic mechanisms of the above four injection gas such as the solubilization expansion, viscosity reduction and tension reduction have been analyzed. CO2 is preferred as the injection gas. Through five groups of high temperature and high pressure long core flooding experiments with different combination methods, the effect of CO2 combination flooding on channeling prevention and extraction is evaluated. The experimental results show that the displacement effects of both CO2+weak gel and CO2+foam are the best two, and the final displacement efficiency is 70.101 % and 68.212 % respectively. The research results show that the injection of CO2 combined flooding slug increases the displacement resistance and reduces the fracture conductivity, which plays a key role in improving the microscopic sweep volume. Among them, both the CO2+weak gel and CO2+foam displacement methods have the best extraction effects. The research results can provide an experimental basis for the efficient development of high pour point oil in this block.

参考文献

[1] 杨胜来, 沈平平, 吴向红, 等. 高凝油原油物性参数及其测定方法[J]. 大庆石油地质与开发, 2011, 30(1):54-57.
[1] YANG Shenglai, SHEN Pingping, WU Xianghong, et al. Property parameters and measurement method for high pour point oil[J]. Petroleum Geology & Oilfield Development in Daqing, 2011, 30(1):54-57.
[2] 温子辉, 张雁, 吕红磊, 等. 高凝油流体特性研究[J]. 当代化工, 2016, 45(3):536-537.
[2] WEN Zihui, ZHANG Yan, LV Honglei, et al. Study on high pour-point oil flow characteristics[J]. Contemporary Chemical Industry, 2016, 45(3):536-537.
[3] 王伟伟. 沈625区块高凝油减氧空气驱实验研究与应用[J]. 复杂油气藏, 2019, 12(3):68-71.
[3] WANG Weiwei. Experimental research of oxygen-reducing air flooding for high pour-point oil in Shen 625 block and its applicatio[J]. Complex Hydrocarbon Reservoirs, 2019, 12(3):68-71.
[4] 许正恩, 辛文明, 刘誉, 等. 高凝油油藏CO2驱转水气交替驱动态及储层伤害特征[J]. 断块油气田, 2019, 26(5):613-616.
[4] XUZheng’en, XINWenming, LIU Yu, et al. Production performance and reservoir damage characteristics of CO2 water-alternatinggas injection after continuous CO2 injection for high pour-point reservoir[J]. Fault-Block Oil and Gas Field, 2019, 26(5):613-616.
[5] 付美龙, 张鼎业, 刘尧文, 等. 二氧化碳对高凝油物性影响实验研究[J]. 钻采工艺, 2004, 27(4):98-99.
[5] FU Meilonglong, ZHANG Dingye, LIU Yaowen, et al. Laboratory research on influence of CO2 on physical property of high pour-point oil[J]. Drilling & Production Technology, 2004, 27(4):98-99.
[6] 秦正山, 罗沛, 刘先山, 等. 气水交替驱提高采收率室内实验研究[J]. 石油化工高等学校学报, 2019, 32(6):52-56.
[6] QIN Zhengshan, LUO Pei, LIU Xianshan, et al. EOR laboratory experimental study of WAG flooding[J]. Journal of Petrochemical Universities, 2019, 32(6):52-56.
[7] LANG L Y, LI H B, WANG X, et al. Experimental study and field demonstration of air foam flooding for heavy oil EOR[J]. Journal of Petroleum Science and Engineering, 2020, 185:106659.
[8] 王曦. CO2泡沫体系性能评价及驱油实验研究[J]. 油气地质与采收率, 2020, 27(1):69-74.
[8] WANG Xi. Performance evaluation and oil displacement experiment study of CO2 foam system[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1):69-74.
[9] 李松岩, 王麟, 韩瑞, 等. 裂缝性致密油藏超临界CO2泡沫驱规律实验研究[J]. 油气地质与采收率, 2020, 27(1):29-35.
[9] LI Songyan, WANG Lin, HAN Rui, et al. Experimental study on supercritical CO2 foam flooding in fractured tight reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1):29-35.
[10] 李兆敏, 徐正晓, 李宾飞, 等. 泡沫驱技术研究与应用进展[J]. 中国石油大学学报:自然科学版, 2019, 43(5):118-127.
[10] LI Zhaomin, XU Zhengxiao, LI Binfei, et al. Advances in research and application of foam flooding technology[J]. Journal of China University of Petroleum(Edition of Natural Science), 2019, 43(5):118-127.
[11] 高冉, 吕成远, 伦增珉. CO2驱油-埋存一体化评价方法[J]. 热力发电, 2021, 50(1):115-122.
[11] GAO Ran, LYU Chengyuan, LUN Zengmin. Integrated evaluation method of CO2 flooding and storage[J]. Thermal Power Generation, 2021, 50(1):115-122.
[12] 赵清, 郭继香, 焦保雷, 等. 耐高温高盐弱凝胶驱油剂的开发及性能评价[J]. 现代化工, 2020, 40(12):137-140.
[12] ZHAO Qing, GUO Jixiang, JIAO Baolei, et al. Development and performance evaluation of weak gel displacement agent with high temperature resistance and high salt resistance[J]. Modern Chemical Industry, 2020, 40(12):137-140.
[13] ALHURAISHAWY A K, BAI B, IMQAM A, et al. Experimental study of combining low salinity water flooding and preformed particle gel to enhance oil recovery for fractured carbonate reservoirs[J]. Fuel, 2018, 214:344-348.
[14] 华帅. 多孔介质中弱凝胶的渗流和驱油特征可视化实验与数值模拟研究[D]. 上海:上海大学, 2016.
[14] HUA Shuai. Visualization experimental and numerical simulation study on the seepage and oil- displacement characteristics of weak gel in porous media[D]. Shanghai: Shanghai University, 2016.
[15] 潘广明, 张彩旗, 刘东, 等. 海上稠油油藏弱凝胶调驱提高采收率技术[J]. 特种油气藏, 2018, 25(3):140-143.
[15] PAN Guangming, ZHANG Caiqi, LIU Dong, et al. Weak- gel profile-control flooding to enhance oil recovery in offshore heavy-oil reservoir[J]. Special Oil & Gas Reservoirs, 2018, 25(3):140-143.
[16] 喻鹏, 杨付林, 刘遥, 等. 高凝油油藏水驱后CO2驱注入参数优化及潜力评价[J]. 钻采工艺, 2019, 42(3):64-67,10.
[16] YU Peng, YANG Fulin, LIU Yao, et al. CO2 Flooding parameter optimization and potential evaluation for highly condensed oil reservoir after water flooding[J]. Drilling & Production Technology, 2019, 42(3):64-67.
[17] 张忠林, 王伟, 赵习森, 等. 注CO2对延长化子坪原油物性的影响[J]. 油田化学, 2019, 36(4):646-650.
[17] ZHANG Zhonglin, WANG Wei, ZHAO Xisen, et al. Effect of CO2 injection on physical properties of Huaziping crude oil in Yanchang Oilfiled[J]. Oilfield Chemistry, 2019, 36(4):646-650.
[18] 李鹏华, 李兆敏, 李宾飞, 等. 封闭油藏注气增能降粘提高采收率研究[J]. 石油化工高等学校学报, 2010, 23(4):56-59.
[18] LI Penghua, LI Zhaomin, LI Binfei, et al. Enhancing bounded reservoir oil recovery by injecting gas to increase energy and decrease viscosity[J]. Journal of Petrochemical Universities, 2010, 23(4):56-59.
[19] 邓瑞健, 齐桂雪, 谭肖, 等. 烃组分对CO2驱最小混相压力的影响[J]. 石油与天然气化工, 2018, 47(6):59-63.
[19] DENG Ruijian, QI Guixue, TAN Xiao, et al. Influence of hydrocarbon components on the minimum miscibility pressure of CO2 flooding[J]. Chemical Engineering of Oil and Gas, 2018, 46(6):59-63.
[20] CAO M, GU Y A. Oil recovery mechanisms and asphaltene precipitation phenomenon in immiscible and miscible CO2 flooding processes[J]. Fuel-Guildford, 2013, 109(1):157-166.
文章导航

/