油气藏评价与开发 >
2021 , Vol. 11 >Issue 6: 852 - 857
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2021.06.008
稠油油藏CO2辅助蒸汽驱油机理实验研究
收稿日期: 2020-10-21
网络出版日期: 2021-12-31
基金资助
国家自然科学基金面上项目“气溶性活性剂辅助稠油冷采的泡沫油组分传质及界面膜研究”(52174035);国家科技重大专项“CO2泡沫体系控制气窜关键技术研究”(2016ZX05016-001-003)
Experimental study on mechanism of CO2 assisted steam flooding in heavy oil reservoir
Received date: 2020-10-21
Online published: 2021-12-31
为进一步明确稠油油藏CO2辅助蒸汽协同驱油机理,利用亚克力板可视化模型和天然岩心,开展了可视化CO2辅助蒸汽驱油实验,分析了CO2辅助蒸汽驱油过程中二者之间存在的“协同作用”及注入方式对实际驱油效率的影响。结果表明,CO2辅助蒸汽驱具有协同降黏、扩大蒸汽波及系数、启动盲端残余油、破乳等“协同作用”,其中原油综合降黏率达到59.8 %,蒸汽波及面积提高了37.44 %。对比纯蒸汽驱,CO2辅助驱可使原油采收率大幅上升,其中交替注入蒸汽与CO2采收率为65.7 %,比混合注入提高了7.9 %,且能够在出口端观测到稳定的泡沫油流。
王俊衡 , 王健 , 周志伟 , 王丹翎 , 赵鹏 , 王桂庆 , 卢迎波 . 稠油油藏CO2辅助蒸汽驱油机理实验研究[J]. 油气藏评价与开发, 2021 , 11(6) : 852 -857 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.06.008
In order to further clarify the mechanism of steam flooding assisted by CO2 in the heavy oil reservoir, its visualization experiments are carried out by the acrylic plate model and natural cores, and their synergy is analyzed. After the mechanism of synergistic displacement is clarified, the core flow experiments are carried out to further analyze the influence of the synergistic effect and the injection mode on the actual displacement efficiency. The results show that CO2 assisted steam flooding has the effects of the synergistic viscosity reduction, the expansion of steam sweep efficiency, the availability of residual oil at the blind end, and the demulsification. Among them, the comprehensive viscosity reduction rate of the crude oil is 59.8 %, and the steam sweep area is increased by 37.44 %. Compared to the flooding by steam alone, after the assitant of CO2, the recovery rate increased significantly. The alternate injection of steam and CO2 can get a recovery rate of 65.7 %, 7.9 % more than that of mixed injection, and observe the stable foam oil flow at the outlet.
[1] | 张方礼. 火烧油层技术综述[J]. 特种油气藏, 2011, 18(6):1-5. |
[1] | ZHANG Fangli. An over view of in situ combustion technology[J]. Special Oil & Gas Reservoirs, 2011, 18(6):1-5. |
[2] | CHAO L, WANG C S, SUN Q J, et al. Study of potential distribution laws in three-dimensional space for oil field exploitation using steam-assisted gravity drainage(SAGD) technology and a compound well group[J]. Chemistry and Technology of Fuels and Oils, 2017, 53(3):399-411. |
[3] | 唐愈轩, 段永刚, 任科屹, 等. 直井辅助对油砂蒸汽辅助重力泄油开发增效的数值模拟[J]. 科学技术与工程, 2019, 19(32):152-157. |
[3] | TANG Yuxuan, DUAN Yonggang, REN Keyi, et al. Numerical simulation of vertical well assistance on the steam assisted gravity drainage development of oil sands[J]. Science Technology and Engineering, 2019, 19(32):152-157. |
[4] | 冯翠菊, 王春生, 张蓉, 等. 稠油重力泄水辅助蒸汽驱三维物理模拟实验[J]. 新疆石油地质, 2019, 40(4):464-467. |
[4] | FENG Cuiju, WANG Chunsheng, ZHANG Rong, et al. Gravity water-drainage assisted steam flooding of heavy oil: 3D physical modeling experiment[J]. Xinjiang Petroleum Geology, 2019, 40(4):464-467. |
[5] | PENG L, YAN Y, ZHANG X F, et al. A numerical model for investigating the steam conformance along the dual-string horizontal wells in SAGD operations[J]. Energies, 2020, 13(15):3981. |
[6] | ZHANG K, LU X Q, ZHOU X, et al. Solvent temperature: An injection condition to bring multiple changes in the heavy oil exploitation process based on the cyclic solvent injection(CSI) recovery method[J]. Energy Science & Engineering, 2020, 8(3):661-676. |
[7] | 赵法军, 王广昀, 哈斯, 等. 国内外稠油和沥青VAPEX技术发展现状与分析[J]. 化工进展, 2012, 31(2):304-309. |
[7] | ZHAO Fajun, WANG Guangyun, HA Si, et al. Development of vapor extraction technique in heavy oil and bitumen recovery[J]. Chemical Industry and Engineering Progress, 2012, 31(2):304-309. |
[8] | 曲占庆, 李杨, 林珊珊, 等. THAI技术开发厚层稠油油藏井网参数优选[J]. 断块油气田, 2014, 21(5):627-631. |
[8] | QU Zhanqing, LI Yang, LIN Shanshan, et al. Parameter optimization of well pattern for heavy oil reservoir with thick layer exploited by THAl technology[J]. Fault-Block Oil and Gas Field, 2014, 21(5):627-631. |
[9] | 刘栋梁, 顾继俊. 稠油热采技术现状及发展趋势[J]. 当代化工, 2018, 47(7):1445-1447. |
[9] | LIU Dongliang, GU Jijun. Present situation and development trend of heavy oil thermal recovery technology[J]. Contemporary Chemical Industry, 2018, 47(7):1445-1447. |
[10] | 唐长久, 盖洁超. 稠油热采技术发展综述[J]. 石化技术, 2018, 25(1):41. |
[10] | TANG Changjiu, GAI Jiechao. Summarization of heavy oil thermal recovery technology[J]. Petrochemical Industry Technology, 2018, 25(1):41. |
[11] | 秦国伟, 王磊, 肖洪伟, 等. 聚驱后氮气泡沫调驱技术[J]. 大庆石油地质与开发, 2016, 35(6):109-112. |
[11] | QIN Guowei, WANG Lei, XIAO Hongwei, et al. Nitrogenfoam profile-controlling and flooding technique after the polymer flooding[J]. Petroleum Geology and Oilfield Development in Daqing, 2016, 35(6):109-112. |
[12] | 谭良柏, 昌伦杰, 沈建新, 等. 插层凝胶颗粒调驱剂的性能评价与现场试验[J]. 石油与天然气化工, 2019, 48(3):78-80. |
[12] | Tan Liangbo, Chang Lunjie, Shen Jianxin, et al. Evaluation and field application of intercalative gel particles as deep profile control agent[J]. Chemical Engineering of Oil & Gas, 2019, 48(3):78-80. |
[13] | 张引弟, 胡多多, 刘畅, 等. 石油石化行业CO2捕集、利用和封存技术的研究进展[J]. 油气储运, 2017, 36(6):636-645. |
[13] | ZHANG Yindi, HU Duoduo, LIU Chang, et al. Research progress of CO2 capture, utilization and storage(CCUS)technologies in petroleum and petrochemical industry[J]. Oil & Gas Storage and Transportation, 2017, 36(6):636-645. |
[14] | 周伟, 寇根, 张自新, 等. 克拉玛依油田九6区稠油油藏蒸汽-CO2复合驱实验评价[J]. 新疆石油地质, 2019, 40(2):204-207. |
[14] | ZHOU Wei, KOU Gen, ZHANG Zixin, et al. Steam-CO2 flooding for heavy oil in District 9-6, Karamay Oilfield; experiment and evaluation[J]. Xinjiang Petroleum Geology, 2019, 40(2):204-207. |
[15] | 袁光喜, 陈金星, 罗全民, 等. CO2辅助蒸汽提高春光超稠油开发效果实验研究[J]. 石油地质与工程, 2018, 32(6):82-84. |
[15] | YUAN Guangxi, CHEN Jinxing, LUO Quanmin, et al. Experimental study on improving the development effect of Chun guang super heavy oil by CO2 assisted steam[J]. Petroleum Geology and Engineering, 2018, 32(6):82-84. |
[16] | 高浩. 九_6区齐古组稠油油藏CO2辅助蒸汽驱油实验研究[D]. 成都:西南石油大学, 2018. |
[16] | GAO Hao. Experimental research of CO2-assisted steam flooding on heavy oil reservoir in Qigu formation of nine-six block[D]. Chengdu: Southwest Petroleum University, 2018. |
[17] | 胡渤, 郑文乾, 祝仰文, 等. 稠油油藏降黏化学驱注入方式优化[J]. 油气地质与采收率, 2020, 27(6):91-99. |
[17] | HU Bo, ZHENG Wenqian, ZHU Yangwen, et al. Optimization of injection method for viscosity reduction chemical flooding in heavy oil reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(6):91-99. |
[18] | 伍正楷, 孙亮波, 王敏娜, 等. 亚克力板自动折弯机创新设计[J]. 机械, 2018, 45(7):40-43. |
[18] | WU Zhengkai, SUN liangbo, WANG Minna, et al. The structure design of acrylic semi automatic bending machine[J]. Machinery, 2018, 45(7):40-43 |
[19] | 张龙力, 王善堂, 杨国华, 等. 稠油二氧化碳降黏的化学机制研究[J]. 石油化工高等学校学报, 2011, 24(2):1-5. |
[19] | ZHANG Longli, WANG Shantang, YANG GuoHua, et al. The chemical mechanism of heavy oil viscosity reduction in carbon dioxide flooding[J]. Journal of Petrochemical Universities, 2011, 24(2):1-5. |
[20] | 姜婷. 蒸汽辅助重力泄油技术的研究进展及应用类型[J]. 石油天然气学报, 2009, 31(5):387-389. |
[20] | JIANG Ting. Research and application types of the technique of steam assisted gravity drainage[J]. Journal of Oil and Gas Technology, 2009, 31(5):387-389. |
[21] | 郑玉飞, 李翔, 徐景亮, 等. 层内自生CO2提高采收率技术在海上油田的研究及应用[J]. 石油与天然气化工, 2019, 48(6):70-74. |
[21] | ZHENG Yufei, LI Xiang, XU Jingliang, et al. Research and application of EOR technology by in-situ CO2 generation on offshore oilfield[J]. Chemical Engineering of Oil & Gas, 2019, 48(6):70-74. |
[22] | WU Z B, LIU H Q, WANG X, et al. Emulsification and improved oil recovery with viscosity reducer during steam injection process for heavy oil[J]. Journal of Industrial and Engineering Chemistry, 2018, 61:348-355. |
[23] | LYU W F, DU D X, YANG J R, et al. Experimental study on factors affecting the performance of foamy oil recovery[J]. Energies, 2019, 12(4):637. |
[24] | 王健, 覃达, 何冯清, 等. Orinoco油藏泡沫油性能评价研究[J]. 石油与天然气化工, 2018, 47(5):68-73. |
[24] | WANG Jian, QIN Da, HE Fengqing, et al. Performance evaluation of Orinoco reservoir foam oil[J]. Chemical Engineering of Oil and Gas, 2018, 47(5):68-73. |
/
〈 | 〉 |