综合研究

泌238断块凝胶与聚合物多轮次交替注入参数优化研究

  • 申乃敏 ,
  • 张连锋 ,
  • 李俊杰 ,
  • 卢俊 ,
  • 龙卫江 ,
  • 胡书奎
展开
  • 1.中国石化河南油田分公司勘探开发研究院,河南 南阳 473132
    2.河南省提高石油采收率重点实验室,河南 南阳 473132
申乃敏(1985—),女,硕士,副研究员,从事提高采收率及油藏开发方案编制工作。地址:河南省郑州市郑东新区正光北街33号,邮政编码:450000。E-mail: shennaimin_2008@163.com

收稿日期: 2020-08-14

  网络出版日期: 2021-12-31

Optimization of alternating injection with multiple rounds of gel and polymer in B238 Block

  • Naimin SHEN ,
  • Lianfeng ZHANG ,
  • Junjie LI ,
  • Jun LU ,
  • Weijiang LONG ,
  • Shukui HU
Expand
  • 1. Exploration and Development Research Institute, Sinopec Henan Oilfield, Nanyang, Henan 473132, China
    2. Henan EOR Key Laboratory, Nanyang, Henan 473132, China

Received date: 2020-08-14

  Online published: 2021-12-31

摘要

为改善下二门油田泌238断块水驱开发过程中窜流严重,开发效果变差的现状,实现进一步提高原油采收率的目的,在室内实验的基础上,运用数值模拟方法,系统地开展了水驱后凝胶体系与聚合物多级段塞交替注入参数优化及聚合物注入质量浓度差异化调整研究。研究结果表明,多轮次小段塞组合方式提高采收率效果优于低轮次大段塞组合方式,主体段塞为:0.08 PV(聚合物)+0.02 PV(凝胶)+0.06 PV(聚合物)+0.02 PV(凝胶)+0.06 PV(聚合物)+0.02 PV(凝胶)+0.06 PV(聚合物)+0.02 PV(凝胶)+0.06 PV(聚合物)+0.02 PV(凝胶)+0.06 PV(聚合物)的组合方式提高采收率值最高,提高采收率值为7.92 %;注入井聚合物质量浓度差异化调整幅度为20 %,即质量浓度值调整420 mg/L时,提高采收率出现拐点,随聚合物质量浓度调整幅度的继续增加,采收率增幅呈下降趋势。说明凝胶体系与聚合物交替注入驱油方法具备进一步开发剩余油的潜力,为同类油藏开发提供一定的技术参考。

本文引用格式

申乃敏 , 张连锋 , 李俊杰 , 卢俊 , 龙卫江 , 胡书奎 . 泌238断块凝胶与聚合物多轮次交替注入参数优化研究[J]. 油气藏评价与开发, 2021 , 11(6) : 878 -883 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.06.012

Abstract

In order to improve the current situation of serious water channeling and the poor development effect during the water flooding development of B238 Block in Xiaermen Oilfield, and further to enhance the oil recovery efficiency, the numerical simulation method has been carried out to systematically study the parameters optimization of the multi-stage slug injection system after polymer flooding and the differential adjustment of polymer injection concentration based on laboratory experiments. It is found that the combined small slug with multiple rounds is more effective than the large slug with less rounds. The main slug which increases EOR most is composed of 0.08 PV (polymer)+0.02 PV(gel)+0.06 PV(polymer)+0.02 PV(gel)+0.06 PV(polymer)+0.02 PV(gel)+0.06 PV(polymer)+0.02 PV(gel)+0.06 PV(polymer) and the EOR value is 7.92 %. When the polymer concentration adjustment range of injection wells is 20 %, that is, the concentration is adjusted to 420 mg/L, EOR reaches the inflection point. And with the continuous increase of polymer concentration adjustment range, the increase of oil recovery shows a downward trend. It shows that the gel system and polymer alternating injection method have the potential to further develop remaining oil, and provide some technical reference for the development of similar reservoirs.

参考文献

[1] 丁保东, 张贵才, 葛际江, 等. 普通稠油化学驱的研究进展[J]. 西安石油大学学报(自然科学版), 2011, 26(3):52-58.
[1] DING Baodong, ZHANG Guicai, GE Jijiang, et al. Research progress in the chemical flooding of conventional heavy oil[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2011, 26(3):52-58.
[2] 郭文敏, 刘同敬, 秦积舜, 等. 大庆油田聚合物驱后周期分质注聚合物技术[J]. 石油学报, 2010, 31(3):449-451.
[2] GUO Wenmin, LIU Tongjing, QIN Jishun, et al. Cyclic injection technology of different polymer after polymer flooding in Daqing Oilfield[J]. Acta Petrolei Sinica, 2010, 31(3):449-451.
[3] 裴海华, 张贵才, 葛际江, 等. 化学驱提高普通稠油采收率的研究进展[J]. 油田化学, 2010, 27(3):350-356.
[3] PEI Haihua, ZHANG Guicai, GE Jijiang, et al. Advance in enhanced ordinary heavy oil recovery by chemical flooding[J]. Oilfield chemistry, 2010, 27(3):350-356.
[4] 巩同宇, 刘军, 江汇, 等. 交联聚合物调驱技术研究及矿场应用[J]. 精细石油化工进展, 2011, 12(11):1-4.
[4] GONG Tongyu, LIU Jun, JIANG Hui, et al. Study and field application of crosslinked polymer profile-control flooding technology[J]. Advances in fine petrochemicals, 2011, 12(11):1-4.
[5] 张宏. 普通稠油弱凝胶调驱动态调控技术研究[J]. 特种油气藏, 2018, 25(1):125-128.
[5] ZHANG Hong. Study on dynamic regulation and control of weak gelflooding in ordinary heavy oil[J]. Special Oil and Gas Reservoirs, 2018, 25(1):125-128.
[6] 蒋平, 葛际江, 张贵才, 等. 稠油油藏化学驱采收率的影响因素[J]. 中国石油大学学报(自然科学版), 2011, 35(2):166-171.
[6] JIANG Ping, Ge Jijiang, ZHANG Guicai, et al. Influence factor on oil recovery efficiency for chemical flooding of heavy oil reservoir[J]. Journal of China University of Petroleum(Edition of Natural Science), 2011, 35(2):166-171.
[7] 方文超. 陆上稠油油田多轮次聚合物驱提高采收率方法[J]. 断块油气田, 2015, 22(5):619-622
[7] FANG Wenchao. Enhancing oil recovery by multi-cycle polymer flooding for onshore heavy oilfields[J]. Fault-Block Oil & Gas Field, 2015, 22(5):619-622
[8] 刘东, 胡廷惠, 潘广明, 等. 稠油油藏弱凝胶调驱增油预测模型研究[J]. 特种油气藏, 2018, 25(4):103-108.
[8] LIU Dong, HU Tinghui, PAN Guangming, et al. Forecasting model for profile control and EOR in heavy oil reservoirs by using weak gel[J]. Special Oil and Gas Reservoirs, 2018, 25(4):103-108.
[9] 刘露, 李华斌. 渗透率变异系数对聚合物驱油影响的数值模拟研究[J]. 油田化学, 2011, 28(4):414-418.
[9] LIU Lu, LI Huabin. Numerical simulation of the permeability variation coefficient effect on polymer flooding[J]. Oilfield Chemistry, 2011, 28(4):414-418.
[10] 未志杰, 康晓东, 何春百, 等. 海上稠油聚合物驱交替注入参数优化研究[J]. 特种油气藏, 2018, 25(1):78-84.
[10] WEI Zhijie, KANG Xiaodong, HE Chunbai, et al. Alternating injection parameter optimization of polymer flooding in offshore heavy-oil reservoir[J]. Special Oil and Gas Reservoirs, 2018, 25(1):78-84.
[11] GILBERT L, LOISEL V, SAVARY G, et al. Stretching properties of xanthan, carob, modified guar and celluloses in cosmetic emulsions[J]. Carbohydrate Polymers, 2013, 93(2):644-650.
[12] HIREMATH J N, VISHALAKSHI B. Evaluation of a pH-responsive guar gum-based hydrogel as adsorbent for cationic dyes: Kinetic and modelling study[J]. Polymer Bulletin, 2015, 72(12):3063-3081.
[13] RISICA D, BARBETTA A, VISCHETTI L, et al. Rheological properties of guar and its methyl, hydroxypropyl and hydroxypropyl-methyl derivatives in semidilute and concentrated aqueous solutions[J]. Polymer, 2010, 51(9):1972-1982.
[14] 梁丹, 康晓东, 唐恩高, 等. 聚合物驱注聚参数分阶段优化决策方法[J]. 断块油气田, 2018, 25(2):213-217.
[14] LIANG Dan, KANG Xiaodong, TANG Engao, et al. Phased optimization method of injection parameters for polymer flooding[J]. Fault-Block Oil & Gas Field, 2018, 25(2):213-217.
[15] 侯健, 杜庆军, 束青林, 等. 聚合物驱宏观剩余油受效机制及分布规律[J]. 石油学报, 2010, 31(1):96-99.
[15] HOU Jian, DU Qingjun, SHU Qinglin, et al. Macroscopic response mechanism and distribution rules of remaining oil in polymer flooding[J]. Acta Petrolei Sinica, 2010, 31(1):96-99.
[16] 江汇. 胜坨油田高温油藏深部调剖体系研究及矿场应用[J]. 精细石油化工进展, 2012, 13(11):12-16.
[16] JIANG Hui. Study and field application of deep profile control system for high temperature reservoir in Shengtuo oilfield[J]. Advances in Fine Petrochemicals, 2012, 13(11):12-16.
[17] SUBBU C, RAJENDRAN S, KESAVAN K, et al. The physical and electrochemical properties of poly(vinylidene chloride-co-acrylonitrile)-based polymer electrolytes prepared with different plasticizers[J]. Ionics, 2016, 22(2):229-240.
[18] KESAVAN K, RAJENDRAN S, MATHEW C M. Studies on poly(vinyl pyrrolidone) based solid polymer blend electrolytes complexed with various lithium salts[J]. Polymer Science Series, 2014, 56(4):520-529.
[19] 王楠, 刘春杰, 于晴晴. 埕岛油田深部调剖体系研究及适应性评价[J]. 石油天然气学报, 2011, 33(8):147-150.
[19] WANG Nan, LIU Chunjie, YU Qingqing. Study on indepth profile control and evaluation on adaptability of Chengdao Oilfield[J]. Journal of Oil and Gas Technology, 2011, 33(8):147-150.
[20] 张洪, 郑继龙, 宋志学, 等. 弱凝胶深部调剖剂的研制及性能评价[J]. 精细石油化工进展, 2014, 15(1):25-28.
[20] ZHANG Hong, ZHENG Jilong, SONG Zhixue, et al. Development and evaluation of weak gel used as deep profile control agent[J]. Advances in Fine Petrochemicals, 2014, 15(1):25-28.
文章导航

/