综合研究

水溶性环糊精聚合物提高疏水缔合聚合物性能研究

  • 李玺 ,
  • 周希 ,
  • 叶仲斌 ,
  • 舒政 ,
  • 陈文娟 ,
  • 陆一新 ,
  • 邱诚 ,
  • 何姝蕊
展开
  • 1.成都工业学院材料与环境工程学院,四川 成都 611730
    2.西南石油大学化学化工学院,四川 成都 610500
    3.成都工业学院,四川 成都 611730
    4.西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500
    5.海洋石油高效开发国家重点实验室,北京 100028
李玺(1988—),男,博士,讲师,主要从事油田化学相关研究。地址:四川省成都市郫都区中信大道二段1号,邮政编码:611730。E-mail: lixifantasy@sina.com

收稿日期: 2021-04-19

  网络出版日期: 2021-12-31

基金资助

海洋石油高效开发国家重点实验室“海上油田驱油聚合物的化学速溶方法探索”(CCL2018RCPS0037RON);油气藏地质及开发工程国家重点实验“超分子协同作用提高缔合聚合物增黏效率机理研究”(PLN2020-3)

Performance enhancement of hydrophobically associative polymer by watersoluble β-cyclodextrin polymer

  • Xi LI ,
  • Xi ZHOU ,
  • Zhongbin YE ,
  • Zheng SHU ,
  • Wenjuan CHEN ,
  • Yixin LU ,
  • Cheng QIU ,
  • Shurui HE
Expand
  • 1. School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, Sichuan 611730, China
    2. College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    3. Chengdu Technological University, Chengdu, Sichuan 611730, China
    4. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    5. State Key Laboratory of Offshore Oil Exploitation, Beijing 100028, China

Received date: 2021-04-19

  Online published: 2021-12-31

摘要

为了提高疏水缔合聚合物(HAP)的流变性能和在多孔介质中的流度控制能力,将环糊精和环氧氯丙烷缩聚得到一种水溶性的环糊精聚合物(β-CDP),并将其与HAP混合。结果表明,环糊精聚合物与疏水缔合聚合物之间的主客体包合作用大幅改善了疏水缔合聚合物溶液的增黏能力和黏弹性,并且主客体包合体系(β-CDP/HAP)保持了显著的剪切稀释性。β-CDP/HAP表现出独特的黏—温关系,其黏流活化能随温度变化,表现出极强的耐温能力。岩心流动实验表明,β-CDP/HAP在多孔介质中形成多层吸附,比HAP具有更强的流度控制能力。通过疏水基团和环糊精基团之间的主客体作用来可以增强分子间的相互作用,能提高缔合聚合物的综合性能。

本文引用格式

李玺 , 周希 , 叶仲斌 , 舒政 , 陈文娟 , 陆一新 , 邱诚 , 何姝蕊 . 水溶性环糊精聚合物提高疏水缔合聚合物性能研究[J]. 油气藏评价与开发, 2021 , 11(6) : 884 -889 . DOI: 10.13809/j.cnki.cn32-1825/te.2021.06.013

Abstract

In order to improve the rheological properties of hydrophobically associating polymers(HAP) and the mobility control ability in porous media, a water-soluble cyclodextrin polymer, β-CDP. is synthesized by condensation of the cyclodextrin and epichlorohydrin, meanwhile, mixed with the HAP. The results showed that the host-guest interaction improves the thickening ability and viscoelasticity of the HAP solution. The host-guest inclusion system of β-CDP and HAP maintained shear thinning behavior. β-CDP/HAP demonstrated special viscosity-temperature curves and its activation energy changes with temperature, showing a strong ability of temperature resistance. The core flooding experiments showed that β-CDP/HAP formed multilayer adsorption in porous media and had stronger mobility control ability than HAP. By the host-guest interaction between the hydrophobesp and the cyclodextrin groups, the intermolecular interaction can be enhanced, and the comprehensive performance of HAP can be improved.

参考文献

[1] 周凤军, 王欣然, 李金宜, 等. 泡沫体系改善早期聚合物驱效果实验研究[J]. 油气地质与采收率, 2019, 26(2):101-105.
[1] ZHOU Fengjun, WANG Xinran, LI Jinyi, et al. Experimental study on foam flooding for improving early polymer flooding in offshore oilfield[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(2):101-105.
[2] 徐辉, 宋敏, 孙秀芝, 等. 新型耐特高温抗水解型聚合物驱油性能[J]. 油气地质与采收率, 2021, 28(04):101-106.
[2] XU Hui, SONG Min, SUN Xiuzhi, et al. Study on oil displacement performance of a new type of polymer with ultra-high temperature and hydrolysis resistance[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(4):101-106.
[3] DUPUIS G, ROUSSEAU D, TABARY R, et al. Flow of hydrophobically modified water-soluble-polymer solutions in porous media: New experimental insights in the diluted regime[J]. SPE Journal, 2011, 16(1):43-54.
[4] 聂俊, 于洪敏, 王友启, 等. 考虑启动压力梯度的聚合物驱数值模拟[J]. 油气地质与采收率, 2017, 24(1):106-110.
[4] NIE Jun, YU Hongmin, WANG Youqi, et al. Numerical simulation study of polymer flooding considering start-up pressure gradient[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(1):106-110.
[5] 李宗阳, 王业飞, 曹绪龙, 等. 新型耐温抗盐聚合物驱油体系设计评价及应用[J]. 油气地质与采收率, 2019, 26(2):106-112.
[5] LI Zongyang, WANG Yefei, CAO Xulong, et al. Design evaluation and application of a novel temperature-resistant and salt-tolerant polymer flooding system[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(2):106-112.
[6] 卢祥国, 曹豹, 谢坤, 等. 非均质油藏聚合物驱提高采收率机理再认识[J]. 石油勘探与开发, 2021, 48(1):148-155.
[6] LU Xiangguo, CAO Bao, XIE Kun, et al. EOR mechanisms of polymer flooding in a heterogeneous oil reservoir[J]. Petroleum Exploration and Development, 2021, 48(1):148-155.
[7] 朱诗杰, 叶仲斌, 宋瑞, 等. 树枝状疏水缔合聚合物的吸附行为[J]. 精细石油化工, 2021, 38(3):12-17.
[7] ZHU Shijie, YE Zhongbin, SONG Rui, et al. Adsorption behavior of dendritic hydrophobically associating polymers[J]. Speciality Petrochemicals, 2021, 38(3):12-17.
[8] WEI B. β-Cyclodextrin associated polymeric systems: Rheology, flow behavior in porous media and enhanced heavy oil recovery performance[J]. Carbohydrate Polymers, 2015, 134:398-405.
[9] WEICKENMEIER M, WENZ G, HUFF J. Association thickener by host guest interaction of a β-cyclodextrin polymer and a polymer with hydrophobic side-groups[J]. Macromolecular rapid communications, 1997, 18(12):1117-1123.
[10] 王用良, 郭拥军, 冯茹森, 等. 环糊精包合作用对疏水缔合聚合物流变调节与应用[J]. 高分子通报, 2012, 25(3):14-21.
[10] WANG Yongliang, GUO Yongjun, FENG Rusen, et al. Research and application of the effect of inclusion complexation of cyclodextrin on rheology modulation of hydrophobically associative polymer[J]. Chinese Polymer Bulletin, 2012, 25(3):14-21.
[11] 李姝静, 吴飞鹏, 李妙贞, 等. 水溶性β-环糊精聚合物和疏水改性聚丙烯酰胺的主客体相互作用[J]. 化学学报, 2005, 63(19):74-79.
[11] LI Shujing, WU Feipeng, LI Miaozhen, et al. Host-guest Interaction between water-soluble β-cyclodextrin polymer and hydrophobically modified polyacrylamide[J]. Acta Chimica Sinica, 2005, 63(19):74-79.
[12] RENARD E, DERATANI A, VOLET G, et al. Preparation and characterization of water soluble high molecular weight β-cyclodextrin-epichlorohydrin polymers[J]. European Polymer Journal, 1997, 33(1):49-57.
[13] RENARD E, BARNATHAN G, DERATANI A, et al. Characterization and Structure of Cyclodextrin-Epichlorohydrin Polymers—Effects of Synthesis Parameters[C]// Proceedings of the Eighth International Symposium on Cyclodextrins. Springer, Dordrecht, 1996: 115-120.
[14] ZHANG Y, FENG Y J, LI B, et al. Enhancing oil recovery from low-permeability reservoirs with a self-adaptive polymer: A proof-of-concept study[J]. Fuel, 2019, 251:136-146.
[15] 郑建华, 曹海建, 陈清清, 等. 高浓度剪切增稠液的制备及流变性能[J]. 化工新型材料, 2020, 48(12):154-156.
[15] ZHENG Jianhua, CAO Hajian, CHEN Qingqing, et al. Preparation and rheological property of shear thickening liquid with high concentration[J]. New Chemical Materials, 2020, 48(12):154-156.
[16] KUJAWA P, AUDIBERT-HAYET A, SELB J, et al. Rheological properties of multisticker associative polyelectrolytes in semidilute aqueous solutions[J]. Journal of Polymer Science Part B: Polymer Physics, 2004, 42(9):1640-1655.
[17] PENG J, DONG R F, REN B Y, et al. Novel hydrophobically modified ethoxylated urethanes end-capped by percec-type alkyl substituted benzyl alcohol dendrons: Synjournal, characterization, and rheological behavior[J]. Macromolecules, 2014, 47(17):5971-5981.
[18] 杨明珠, 黄光速, 朱勇. 新型温敏改性丙烯酰胺共聚物的性能研究[J]. 塑料工业, 2012, 40(4):35-38.
[18] YANG Mingzhu, HUANG Guangsu, ZHU Yong. Property study on novel thermo-sensitive polyacrylamide derivatives[J]. China Plastics Industry, 2012, 40(4):35-38.
[19] 陈磊, 鲍文辉, 郭布民, 等. 耐高温海水基压裂液稠化剂性能评价[J]. 油田化学, 2020, 37(1):17-21.
[19] CHEN Lei, BAO Wenhui, GUO Bumin, et al. Performance evaluation of thickener for seawater-based fracturing fluid with high temperature[J]. Oilfield Chemistry, 2020, 37(1):17-21.
[20] 梁严. 疏水微嵌段长度对微嵌段疏水缔合聚丙烯酰胺与十二烷基硫酸钠相互作用的影响[D]. 成都:西南石油大学, 2014.
[20] LIANG Yan. Influence of the length of hydrophobic microblock on the interaction of microblock hydrophobically associating polyacrylamide and sodium lauryl sulfate[D]. Chengdu: Southwest Petroleum University, 2014.
文章导航

/