专家论坛

贵州习水骑龙村奥陶系五峰组—志留系龙马溪组剖面

  • 刘树根 ,
  • 冉波 ,
  • 叶玥豪 ,
  • 王世玉 ,
  • 杨迪 ,
  • 罗超 ,
  • 韩雨樾 ,
  • 宋金民 ,
  • 张旋
展开
  • 1.油气藏地质及开发工程国家重点实验室(成都理工大学),四川 成都 610059
    2.西华大学,四川 成都 610039
    3.陕西延长石油(集团)有限责任公司研究院,陕西 西安 710075
    4.中国石油西南油气田分公司,四川 成都 610041
刘树根(1964—),男,研究生,教授,本刊第二届编委会委员,从事石油地质学与构造地质学的教学与科研工作。地址:四川省成都市成华区二仙桥东三段1号,邮政编码:610059。E-mail: lsg@cdut.edu.cn

收稿日期: 2021-10-09

  网络出版日期: 2022-03-24

基金资助

国家自然科学基金企业联合基金02课题“海相深层碳酸盐岩层系油气成藏机理与开发方法”——“四川盆地震旦系—寒武系油气成藏过程与机理”(P19038);国家自然科学基金面上项目“川西地区深层雷口坡组微生物岩及其储层形成机理研究”(41872150)

Outcrop of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Qilong Village, Xishui, Guizhou

  • Shugen LIU ,
  • Bo RAN ,
  • Yuehao YE ,
  • Shiyu WANG ,
  • Di YANG ,
  • Chao LUO ,
  • Yuyue HAN ,
  • Jinmin SONG ,
  • Xuan ZHANG
Expand
  • 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, Sichuan 610059, China
    2. Xihua University, Chengdu, Sichuan 610039, China
    3. Research Institute of Yanchang Petroleum (Group) Co., Ltd., Xi'an, Shaanxi 710075, China
    4. PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan 610041, China

Received date: 2021-10-09

  Online published: 2022-03-24

摘要

对贵州习水骑龙村奥陶系五峰组—志留系龙马溪组剖面实测,通过古生物对比、薄片鉴定、扫描电镜和氮气吸附等方法对五峰组—龙马溪组开展了系统性的研究,其主要认识有:①骑龙村五峰组—龙马溪组剖面出露完整,与上覆志留系石牛栏组和下伏奥陶系涧草沟组均为整合接触,发育12个笔石带,无地层缺失;②骑龙村五峰组—龙马溪组剖面黑色页岩主要发育6种页岩岩相;③骑龙村五峰组—龙马溪组剖面页岩中的石英含量从底到顶逐渐减少,而黏土矿物却逐渐增加,因此脆性矿物的含量从底到顶逐渐减少,页岩易压裂性降低;④骑龙村剖面五峰组—龙马溪组有机质类型主要为Ⅰ型和Ⅱ1型,高总有机碳含量(TOC)优质页岩主要分布在五峰组和龙马溪组下段;⑤骑龙村剖面五峰组—龙马溪组古生产力相对较低,优质黑色页岩沉积环境为缺氧—贫氧条件,其有机质含量高得益于高有机质埋藏效率;⑥骑龙村剖面五峰组—龙马溪组有机质孔主要分布在龙马溪组下段和五峰组,龙马溪组上段与观音桥段有机质孔不发育,纵向上表现为小孔径孔隙占比随地层向上递减,大孔径孔隙占比随地层向上递增;⑦骑龙村剖面五峰组—龙马溪组天然气吸附量最小为1.62 m3/t,最大为2.8 m3/t,平均值为2.13 m3/t,表现为TOC值越大,相应的吸附能力也越强,反映出有机质含量对富有机质页岩的含气能力起决定性的作用。

本文引用格式

刘树根 , 冉波 , 叶玥豪 , 王世玉 , 杨迪 , 罗超 , 韩雨樾 , 宋金民 , 张旋 . 贵州习水骑龙村奥陶系五峰组—志留系龙马溪组剖面[J]. 油气藏评价与开发, 2022 , 12(1) : 10 -28 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.01.002

Abstract

As a systematic study of the Wufeng-Longmaxi Formation was carried out by paleontological comparison, thin section identification, scanning electron microscopy and Nitrogen Adsorption Method in Qilong Village outcrop, Xishui, Guizhou Province, the following main insights are obtained: ① The Wufeng-Longmaxi Formation in Qilong Village outcrop is complete, and is conformable with overlying Silurian Shiniulan Formation and the underlying Ordovician Jiancaogou Formation, with 12 graptolite biozones developed and without unconformity; ② Based on a variety of sedimentary fabric features, six major shale lithofacies in the Wufeng-Longmaxi Formation are determined; ③ The quartz content of the Wufeng Longmaxi Formation decreases, while clay minerals increase gradually from the bottom to the top in Qilong Village outcrop, which shows the content of brittle minerals decreases, and a decrease of fracability of the shale from the bottom to the top; ④ The organic matter types of Wufeng-Longmaxi Formation in Qilong Village outcrop are mainly of type Ⅰ and type Ⅱ1, and the high TOC shale is mainly distributed in the Wufeng and lower Longmaxi Formation; ⑤ There is relatively low paleoproductivity of the Wufeng-Longmaxi Formation in Qilong Village outcrop. The high quality black shale was deposited in anoxic-dysoxic conditions, and high content of organic matter benefits from the high burial efficiency of organic matter; ⑥ The organic pores of the Wufeng-Longmaxi Formation in Qilong Village outcrop are mainly distributed in Wufeng and lower Longmaxi Formation, while organic pores were not developed in the upper member of Longmaxi Formation or Guanyinqiao member. The abundance of the small pores vertically decreases with stratigraphy upwards and The abundance of the large pore increases with stratigraphy upwards; ⑦ The natural gas adsorption capacity of the Wufeng-Longmaxi Formation in Qilong Village outcrop is a minimum of 1.62 m3/t, a maximum of 2.8 m3/t, and an average value of 2.13 m3/t. This shows that the larger the TOC value is, the stronger the corresponding adsorption capacity will be, and indicates organic matter content plays a decisive role in gas-bearing capacity of organic-rich shales.

参考文献

[1] 杨迪, 刘树根, 单钰铭, 等. 四川盆地东南部习水地区上奥陶统—下志留统泥页岩裂缝发育特征[J]. 成都理工大学学报(自然科学版), 2013, 40(5):543-553.
[1] YANG Di, LIU Shugen, SHAN Yuming, et al. Fracture characteristics of shale in Upper Ordovician-Lower Silurian in Xishui Area, Southeast of Sichuan Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2013, 40(5):543-553.
[2] 王世玉, 刘树根, 孙玮, 等. 黔中隆起北部上奥陶统—下志留统页岩特征[J]. 成都理工大学学报(自然科学版), 2012, 39(6):599-605.
[2] WANG Shiyu, LIU Shugen, SUN Wei, et al. Features of the shale from Upper Ordovician-Lower Silurian in the north of Middle Guizhou uplift, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2012, 39(6):599-605.
[3] 袁海峰. 四川盆地震旦系—下古生界成藏机理[D]. 成都:成都理工大学, 2008.
[3] YUAN Haifeng. Accumulation mechanism of Sinian-Lower Paleozoic Reservoirs in Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2008.
[4] LEE J S, CHAO Y T. Geology of the Gorge district of the Yangtze(from Ichang to Tzekuei)with special reference to the development of the Gorges[J]. Bulletin of the Geological Society of China, 1924, 3:351-391.
[5] SUN Y C. Graptolite-bearing strata of China[J]. Bulletin of the Geological Society of China, 1931, 10(1):291-300.
[6] 穆恩之. 论五峰页岩[J]. 古生物学报, 1954, 2(2):153-170.
[6] MU Enzhi. On the Wufeng shale[J]. Acta Palaeontologica Sinica, 1954, 2(2):153-170.
[7] 汪啸风. 中国奥陶纪古地理重建及其沉积环境与生物相特征[J]. 古生物学报, 1989, 28(2):234-248.
[7] WANG Xiaofeng. Paleogeographic reconstruction of Ordovician in China and characteristics of its sedimentary environment and biofacies[J]. Acta Palaeontologica Sinica, 1989, 28(2):234-248.
[8] 汪啸风, 曾庆銮, 周天梅, 等. 再论奥陶系与志留系界线的划分与对比[J]. 地球学报, 1986, 8(1):157-175.
[8] WANG Xiaofeng, ZENG Qingluan, ZHOU Tianmei, et al. Rediscussion on the division and correlation of the Ordovician-Silurian boundary[J]. Bulletin of the Chinese Academy of Geological Sciences, 1986, 8(1):157-175.
[9] 陈旭, 戎嘉余, 樊隽轩, 等. 扬子区奥陶纪末赫南特亚阶的生物地层学研究[J]. 地层学杂志, 2000, 24(3):173-175.
[9] CHEN Xu, RONG Jiayu, FAN Junxuan, et al. Biostratigraphy of the Hernantian Substage in the Yangtze region[J]. Journal of Stratigraphy, 2000, 24(3) : 173-175.
[10] CHEN X, RONG J Y, MITCHELL C E, et al. Latest Ordovician to earliest Silurian graptolite and brachiopod biozonation from the Yangtze region, South China with a global correlation[J]. Geological Magazine, 2000, 137:623-650.
[11] CHEN X, RONG J Y, FAN J X, et al. The global boundary stratotype section and point(GSSP) for the base of the Hirnantian Stage(the uppermost of the Ordovician System)[J]. Episodes, 2006, 29(3):183-196.
[12] 樊隽轩, MELCHIN M J, 陈旭, 等. 华南奥陶—志留系龙马溪组黑色笔石页岩的生物地层学[J]. 中国科学:地球科学, 2012, 42(1):130-139.
[12] FAN Junxuan, MELCHIN M J, CHEN Xu, et al. Biostratigraphy and geography of the Ordovician-Silurian Lungmachi black shales in South China[J]. Scientia Sinica(Terrae), 2012, 42(1):130-139.
[13] 陈旭, 樊隽轩, 张元动, 等. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定[J]. 地层学杂志, 2015, 39(4):351-358.
[13] CHEN Xu, FAN Junxuan, ZHANG Yuandong, et al. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze platform[J]. Journal of Stratigraphy, 2015, 39(4):351-358.
[14] 陈旭, 樊隽轩, 王文卉, 等. 黔渝地区志留系龙马溪组黑色笔石页岩的阶段性渐进展布模式[J]. 中国科学:地球科学, 2017, 47(6):720-732.
[14] CHEN Xu, FAN Junxuan, WANG Wenhui, et al. Stage-progressive distribution pattern of the Lungmachi black graptolitic shales from Guizhou to Chongqing, Central China[J]. Scientia Sinica(Terrae), 2017, 47(6):720-732.
[15] 秦建中, 刘宝泉, 国建英, 等. 关于碳酸盐烃源岩的评价标准[J]. 石油实验地质, 2004, 8(3):281-286.
[15] QIN Jianzhong, LIU Baoquan, GUO Jianying, et al. Discussion on the evaluation standards of carbonate source rocks[J]. Petroleum Geology & Experiment, 2004, 8(3):281-286.
[16] GINGELE F, DAHMKE A. Discrete barite particles and barium as tracers of paleoproductivity in South Atlantic sediments[J]. Paleoceanography, 1994, 9(1):151-168.
[17] PAYTAN A, MOORE W S, KASTNER M. Sedimentation rate as determined by 226Ra activity in marine barite[J]. Geochimica et Cosmochimica Acta, 1996, 60(22):4313-4319.
[18] BERNSTEIN R E, BYRNE R H. Acantharians and marine barite[J]. Marine Chemistry, 2004, 86(1-2):45-50.
[19] MCMANUS J, WILLIAM M B, SILKE S. Molybdenum and uranium geochemistry in continental margin sediments: Paleoproxy potential[J]. Geochim Cosmochim Acta, 2006, 70:4643-4662.
[20] SIEBERT C, MCMANUS J, BICE A, et al. Molybdenum isotope signatures in continental margin marine sediments[J]. Earth Planet Science Letters, 2006, 241(3-4):723-733.
[21] ZHOU L, HUANG J H, ARCHER C, et al. Molybdenum isotope composition from Yangtze Block continental margin and its indication to organic burial rate[J]. Frontiers of Earth Science in China, 2007, 1:417-424.
[22] 殷鸿福, 谢树成, 颜佳新, 等. 海相碳酸盐烃源岩评价的地球生物学方法[J]. 中国科学:地球科学, 2011, 41(7):895-909.
[22] YIN Hongfu, XIE Shucheng, YAN Jiaxin, et al. Geobiological approach to evaluating marine carbonate source rocks of hydrocarbon[J]. Scientia Sinica(Terrae), 2011, 41(7):895-909.
[23] JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1-4):111-129.
[24] KIMURA H, WATANABE Y. Oceanic anoxia at the Precambrian-Cambrian boundary[J]. Geology, 2001, 29(11):995-998.
[25] LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79:848-861.
[26] CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11):1921-1938.
[27] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: The mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4):475-499.
[28] SCHIEBER J. Shale microfabrics and pore development: an overview with emphasis on the importance of depositional processes[J]. Recovery, 2011: 1-4.
[29] MASTALERZ M, SCHIMMELMANN A, DROBNIAK A, et al. Porosity of Devonian and Mississippian new Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97:1621-1643.
[30] LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96:1071-1098.
[31] ROUQUEROL F, ROUQUEROL J, SING K. Adsorption by powders and porous solids: Principles, methodology and applications[M]. San Diego: Academic Press, 1999.
文章导航

/