页岩气

黔北道真巴渔剖面五峰组—龙马溪组页岩地质特征

  • 杜伟 ,
  • 彭勇民 ,
  • 龙胜祥 ,
  • 聂海宽 ,
  • 孙川翔 ,
  • 塔力哈尔·叶尔哈孜
展开
  • 1.页岩油气富集机理与有效开发国家重点实验室,北京 100083
    2.中国石化页岩油气勘探开发重点实验室,北京 100083
    3.中国石化石油勘探开发研究院,北京 100083
    4.中国地质大学,北京 100083
杜伟(1984—),男,高级工程师,主要从事页岩气地质研究,地址:北京市昌平区沙河地区中国石化科学技术研究中心818室,邮政编码:102206。E-mail:duwei. syky@sinopec.com.com

收稿日期: 2021-07-13

  网络出版日期: 2022-03-24

基金资助

国家自然科学基金“四川盆地五峰组—龙马溪组页岩气储层演化机理及评价方法”(41872124)

Geological characteristics of shale in Wufeng-Longmaxi Formation of Bayu outcrop in Daozhen, northern Guizhou

  • Wei DU ,
  • Yongmin PENG ,
  • Shengxiang LONG ,
  • Haikuan NIE ,
  • Chuanxiang SUN ,
  • Talihaer YEERHAZI
Expand
  • 1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, China
    2. Sinopec Key Laboratory of Shale Oil/Gas Exploration and Production Technology, Beijing 100083, China
    3. Sinopec Petroleum Exploration and Production Research Institute, Beijing 100083, China
    4. China University of Geosciences, Beijing 100083, China

Received date: 2021-07-13

  Online published: 2022-03-24

摘要

黔北地区道真巴渔剖面上奥陶统五峰组—下志留统龙马溪组一段地层出露较好,地层界限清晰完整。受全球海平面变化的控制,该剖面五峰组—龙马溪组一段自下而上发育含黏土硅质页岩、硅质页岩、含黏土硅质页岩、黏土质页岩和粉砂质页岩,与盆缘彭水地区和盆内焦石坝具有相似的纵向叠置特征。巴渔剖面五峰组—龙马溪组一段优质页岩岩性主要是含黏土硅质页岩、硅质页岩,具有与盆缘彭水地区和盆内焦石坝地区较为一致的有机质富集规律,TOC(总有机碳含量)与石英矿物含量呈正相关关系,与黏土矿物含量呈负相关关系。巴渔剖面五峰组—龙马溪组一段优质页岩总厚度26.1 m,低于盆缘彭水地区和盆内焦石坝地区,反映道真地区在上奥陶统五峰组—下志留统龙马溪组沉积时期沉积水体深度相对较浅。

本文引用格式

杜伟 , 彭勇民 , 龙胜祥 , 聂海宽 , 孙川翔 , 塔力哈尔·叶尔哈孜 . 黔北道真巴渔剖面五峰组—龙马溪组页岩地质特征[J]. 油气藏评价与开发, 2022 , 12(1) : 130 -138 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.01.011

Abstract

The upper Ordovician Wufeng Formation and the first member of the lower Silurian Longmaxi Formation are well exposed in Bayu outcrop Daozhen, northern Guizhou, with clear and complete stratigraphic boundaries. Under the control of global sea level changes, the Wufeng Formation and the first member of the Longmaxi Formation develop clay-bearing siliceous shale, siliceous shale, clay-bearing siliceous shale, argillaceous shale and silty shale from bottom to top, which display similar longitudinal superimposition characteristics to the Pengshui area on the edge of the Sichuan Basin and Jiaoshiba area in the basin. Lithology of the organic-rich shale in Wufeng Formation and the first member of the Longmaxi Formation in Bayu outcrop of Daozhen is dominated by clay-bearing siliceous shale and siliceous shale, which have the same organic matter enrichment features as that in the Pengshui and Jiaoshiba area. Specifically, TOC is positively correlated with the content of quartz, and negatively correlated with the content of clay minerals. The total thickness of organic-rich shale in the Wufeng Formation and the first member of the Longmaxi Formation at this profile is 26.1 m, which is lower than that in the Pengshui and the Jiaoshiba area, reflecting a relatively shallow-water depositional environment in the Daozhen area.

参考文献

[1] 张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004, 24(7):15-18.
[1] ZHANG Jinchuan, JIN Zhijun, YUAN Mingsheng. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 2004, 24(7):15-18.
[2] CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11):1921-1938.
[3] 郭旭升. 南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7):1209-1218.
[3] GUO Xusheng. Rules of Two-Factor enrichment for marine shale gas in southern China——Understanding from the Longmaxi Formation Shale Gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7):1209-1218.
[4] 聂海宽, 金之钧, 边瑞康, 等. 四川盆地及其周缘上奥陶统五峰组—下志留统龙马溪组页岩气“源-盖控藏”富集[J]. 石油学报, 2016, 37(5):557-571.
[4] NIE Haikuan, JIN Zhijun, BIAN Ruikang, et al. The“source-cap hydrocarbon-controlling”enrichment of shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2016, 37(5):557-571.
[5] 易积正, 王超. 四川盆地焦石坝地区龙马溪组海相页岩储层非均质性特征[J]. 石油实验地质. 2018, 40(1):13-19.
[5] YI Jizheng, WANG Chao. Differential pore development characteristics in various shale lithofacies of Longmaxi Formation in Jiaoshiba area, Sichuan Basin[J]. Petroleum Geology & Experiment, 2018, 40(1):13-19.
[6] HU Z Q, DU W, SUN C X, et al. Evolution and migration of shale facies and their control on shale gas: A case study from the Wufeng-Longmaxi Formations in the Sichuan Basin and its surroundings[J]. Interpretation, 2018, 6(4):57-70.
[7] 杜伟, 胡宗全, 朱彤, 等. 四川盆地及周缘上奥陶统五峰组岩相特征[J]. 石油实验地质, 2020, 42(3):398-404.
[7] DU Wei, HU Zongquan, ZHU Tong, et al. Lithofacies of Upper Ordovician Wufeng Formation in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2020, 42(3):398-404.
[8] 王超, 张柏桥, 舒志国, 等. 四川盆地涪陵地区五峰组-龙马溪组海相页岩岩相类型及储层特征[J]. 石油与天然气地质, 2018, 39(3):485-497.
[8] WANG Chao, ZHANG Baiqiao, SHU Zhiguo, et al. Lithofacies types and reservoir characteristics of marine shales of the Wufeng Formation-Longmaxi Formation in Fuling area,the Sichuan Basin[J]. Oil and Gas Geology, 2018, 39(3):485-497.
[9] 熊亮. 川南威荣页岩气田五峰组—龙马溪组页岩沉积相特征及其意义[J]. 石油实验地质, 2019, 41(3):326-332.
[9] XIONG Liang. Characteristics and significance of sedimentary facies of Wufeng-Longmaxi formation shale in Weirong Shale Gas Field, southern Sichuan Basin[J]. Petroleum Geology & Experiment, 2019, 41(3):326-332.
[10] 洪亚飞, 王建忠, 孙强. 焦石坝页岩气储层产能影响因素分析[J]. 常规油气, 2016, 3(5):73-78.
[10] HONG Yafei, WANG Jianzhong, SUN Qiang. Analysis of the influence factors for shale gas reservoir in Jiaoshiba area[J]. Unconventional Oil and Gas, 2016, 3(5):73-78.
[11] 戴传固, 胡明扬, 陈建书, 等. 贵州重要地质事件及其地质意义[J]. 贵州地质, 2015, 32(1):1-9.
[11] DAI Chuangu, HU Mingyang, CHEN Jianshu, et al. The important geologic events of Guizhou Province and its geologic significance[J]. Guizhou Geology, 2015, 32(1):1-9.
[12] 陈旭, 戎嘉余, 周志毅, 等. 上扬子区奥陶–志留纪之交的黔中隆起和宜昌上升[J]. 科学通报, 2001, 46(12):1052-1056.
[12] CHEN Xu, RONG Jiayu, ZHOU Zhiyi, et al. The central Guizhou uplift and Yichang uplift at the turn of Ordovician Silurian in the upper Yangtze Region[J]. Chinese Science Bulletin, 2001, 46(12):1052-1056.
[13] 卢龙飞, 秦建中, 申宝剑, 等. 中上扬子地区五峰组-龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系[J]. 地学前缘, 2018, 25(4):226-236.
[13] LU Longfei, QIN Jianzhong, SHEN Baojian, et al. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi Formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment[J]. Earth Science Frontiers, 2018, 25(4):226-236.
[14] 卢龙飞, 刘伟新, 俞凌杰, 等. 生物蛋白石早期成岩相变特征及对硅质页岩孔隙发育与孔径分布的影响[J]. 石油实验地质, 2020, 42(3):45-52.
[14] LU Longfei, LIU Weixin, YU Lingjie, et al. Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale[J]. Petroleum Geology & Experiment, 2020, 42(3):45-52.
[15] 梁狄刚, 郭彤楼, 陈建平, 等. 中国海相生烃成藏研究的若干新进展(一):南方四套区域性海相烃源岩的分布[J]. 海相油气地质, 2009, 13(2):1-16.
[15] LIANG Digang, GUO Tonglou, CHEN Jianping, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions,southern China(Part 1):Distribution of four suits of regional marine source rocks[J]. Marine Origin Petroleum Geology, 2009, 13(2):1-16.
[16] 郑和荣, 胡宗全. 中国前古生代构造—岩相古地理图集[M]. 北京: 地质出版社, 2010.
[16] ZHENG Herong, HU Zongquan. Tectonic-Lithofacies Paleogeographic atlas of former Paleozoic of China[M]. Beijing: Geological Publishing House, 2010.
[17] 郑和荣, 高波, 彭勇民, 等. 中上扬子地区下志留统沉积演化与页岩气勘探方向[J]. 古地理学报, 2013, 15(5):645-656.
[17] ZHENG Herong, GAO Bo, PENG Yongmin, et al. Sedimentary evolution and shale gas exploration direction of the Lower Silurian in Middle-Upper Yangtze area[J]. Journal of Palaeogeography, 2013, 15(5):645-656.
文章导航

/