油气藏评价与开发 >
2022 , Vol. 12 >Issue 1: 255 - 264
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2022.01.022
辉绿岩床侵入对围岩有机质热演化影响的模拟研究——以赵家山下马岭组剖面为例
收稿日期: 2022-01-17
网络出版日期: 2022-03-24
基金资助
国家自然科学基金“页岩含气性关键参数测试及智能评价系统”(41927801)
Numerical simulation of influence of diabase bed intrusion on thermal evolution of organic rich host rock: A case study of Zhaojiashan Xiamaling Formation
Received date: 2022-01-17
Online published: 2022-03-24
燕山地区中上元古界下马岭组发育大套黑色页岩,是页岩气勘探的潜在目标层位。野外剖面调查显示下马岭组地层中有多套辉绿岩床侵入,是制约油气成藏的关键因素。选取赵家山下马岭组剖面为研究对象,在实测剖面以及开展成熟度测定的基础上,重点对侵入黑色页岩段的一套约7 m厚的辉绿岩床对围岩成熟度的影响开展数值模拟研究。结果表明,这套辉绿岩床对围岩Ro(镜质体反射率)的影响范围约为8.5 m,是自身厚度的1.2倍,并且靠近岩床方向Ro呈指数增加。数值模拟结果显示,这套辉绿岩在110年后基本冷却,对围岩地温场的扰动范围约为100 m,远大于对Ro的影响范围,只有当围岩温度能达到并超过250 ℃时才会引起Ro值的变化响应。辉绿岩床厚度越大,对围岩Ro的影响范围越大,靠近岩床方向Ro增加的程度越大;辉绿岩床对围岩有机质Ro的影响范围为自身厚度的1倍以上。
刘君兰 , 张金川 , 王胜 , 陈莉 , 牛嘉亮 . 辉绿岩床侵入对围岩有机质热演化影响的模拟研究——以赵家山下马岭组剖面为例[J]. 油气藏评价与开发, 2022 , 12(1) : 255 -264 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.01.022
The black shales is widely distributed in Proterozoic Xiamaling Formation of Yanshan area, making the Xiamaling Formation to be an important potential target for shale gas exploration. Field profile survey shows that several sets of diabase sill intruded into Xiamaling Formation, which has great influence on oil and gas accumulation. Therefore, the numerical simulation study on the influence of a set of diabase bed about 7 m thick on the maturity of host rock is carried out based on the measurement of the field section and bitumen reflectance of the neighbouring shales. The results show that the influence range of this diabase bed on Ro of organic matter in host rock is about 8.5 m, which is about 1.2 times of its own thickness. The measured Ro values increases exponentially near the bedrock. The numerical simulation results show that the diabase will cool down almost completely after 110 years, and the disturbance range to the surrounding rock geothermal field is about 100 m, which is much larger than the influence range of Ro. Only when the surrounding rock temperature is greater than or equal to 250 ℃ can it cause the change response of the Ro values. The greater the thickness of diabase bed, the greater the influence range on Ro of organic matter in host rock, and the greater the increase of Ro near the bedrock. The influence range of diabase bed on Ro of organic matter in host rock is about the same to its own thickness.
[1] | 王铁冠. 燕山地区震旦亚界油苗的原生性及其石油地质意义[J]. 石油勘探与开发, 1980(2):34-52. |
[1] | WANG Tieguan. Protogenesis of Sinian Suberathem oil seedlings in Yanshan area and its petroleum geological significance[J]. Petroleum Exploration and Development, 1980(2):34-52. |
[2] | 张水昌, 张宝民, 边立曾, 等. 8亿多年前由红藻堆积而成的下马岭组油页岩[J]. 中国科学(D辑:地球科学), 2007, 37(5):636-643. |
[2] | ZHANG Shuichang, ZHANG Baomin, BIAN Lizeng, et al. Xiamaling formation oil shale accumulated by red algae more than 800 million years ago[J]. Scientia Sinica(Series D: Terrae), 2007, 37(5):636-643. |
[3] | 刘清俊, 柯柏林, 林海亮, 等. 北京地区中元古界下马岭组页岩气形成条件[J]. 地质科技情报, 2014, 33(2):92-97. |
[3] | LIU Qingjun, KE Bailin, LIN Hailiang, et al. Forming conditions and characteristics of the shale gas within the Mesoproterozoic Xiamaling Formation, Beijing Area[J]. Geological Science and Technology Information, 2014, 33(2):92-97. |
[4] | 荆铁亚, 杨光, 林拓, 等. 中国中上元古界页岩气地质特征及有利区预测[J]. 特种油气藏, 2015, 22(6):5-9. |
[4] | JING Tieya, YANG Guang, LIN Tuo, et al. Geological characteristics and prospective zone prediction of Meso-Epiproterozoic shale gas in China[J]. Special Oil & Gas Reservoirs, 2015, 22(6):5-9. |
[5] | LUO Q Y, GEORGE S C, XU Y H, et al. Organic geochemical characteristics of the Mesoproterozoic Hongshuizhuang Formation from northern China: Implications for thermal maturity and biological sources[J]. Organic Geochemistry, 2016(99):23-37. |
[6] | 张驰, 郭嘉梁, 邵龙义. 京西青白口系下马岭组沉积相及页岩气地质条件分析[J]. 煤田地质与勘探, 2018, 46(4):86-92. |
[6] | ZHANG Chi, GUO Jialiang, SHAO Longyi. Sedimentary facies and shale gas geological conditions of Xiamaling Formation of Qingbaikouan System in western Beijing[J]. Coal Geology & Exploration, 2018, 46(4):86-92. |
[7] | 刘静, 周志, 刘喜恒, 等. 燕山地区中元古界页岩气成藏地质条件[J]. 石油学报, 2019, 40(3):268-278. |
[7] | LIU Jing, ZHOU Zhi, LIU Xiheng, et al. Geological conditions of the Mesoproterozoic shale gas accumulation in Yanshan area, North China[J]. Acta Petrolei Sinica, 2019, 40(3):268-278. |
[8] | 黄醒汉, 张一伟 燕山西段震旦亚界、下古生界含油性[J]. 华东石油学院学报, 1979(1):103-114,145-148. |
[8] | HUANG Xinghan, ZHANG Yiwei. Oil bearing property of Sinian Suberathem and lower Paleozoic in Western Yanshan[J]. Journal of East China Petroleum Institute, |
[9] | 王铁冠, 黄光辉, 徐中一. 辽西龙潭沟元古界下马岭组底砂岩古油藏探讨[J]. 石油与天然气地质, 1988, 9(3):71-80. |
[9] | WANG Tieguan, HUANG Guanghui, XU Zhongyi. A fossil oil pool on the basement of the Xiamaling Formation of the upper Proterozoic in Longtangou. West Liaoning[J]. Oil & Gas Geology, 1988, 9(3):71-80. |
[10] | 王丽云, 罗顺社, 张敏, 等. 河北宽城北杖子地区下马岭组沉积相特征[J]. 石油地质与工程, 2009, 23(3):30-32. |
[10] | WANG Liyun, LUO Shunshe, ZHANG Min, et al. characteristics of sedimentary facies of Xiamaling formation at Beizhangzi aera, Kuancheng, Hebei[J]. Petroleum Geology and Engineering, 2009, 23(3):30-32. |
[11] | 张拴宏, 赵越. 华北克拉通北部13.3~13.0亿年基性大火成岩省与稀土-铌成矿事件[J]. 地学前缘, 2018, 25(5):34-50. |
[11] | ZHANG Shuanhong, ZHAO Yue. The 1.33~1.30 Ga mafic large igneous province and REE-Nb metallogenic event in the northern North China Craton[J]. Earth Science Frontiers, 2018, 25(5):34-50. |
[12] | 刘岩, 钟宁宁, 宋涛, 等. 海相油页岩的生烃动力学特征——以燕山地区下马岭组油页岩为例[J]. 吉林大学学报(地球科学版), 2011, 41(S1):78-84. |
[12] | LIU Yan, ZHONG Ningning, SONG Tao, et al. Kinetics of marine oil shale: A case study of Xiamaling Formation oil shale in Yanshan region, North China[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(S1):78-84. |
[13] | SIMONEIT B R T, BRENNER S, PETERS K E, et al. Thermal alteration of Cretaceous black shale by basaltic intrusions in the Eastern Atlantic[J]. Nature, 1978, 273:501-504. |
[14] | ALALADE B, TYSON R V. Influence of igneous intrusions on thermal maturity of Late Cretaceous shales in the Tuma well, Chad Basin, NE Nigeria[J]. Journal of African Earth Sciences, 2013, 77:59-66. |
[15] | QUADERER A, MASTALERZ M, SCHIMMELMANN A, et al. Dike-induced thermal alteration of the Springfield Coal Member (Pennsylvanian) and adjacent clastic rocks, Illinois Basin, USA[J]. International Journal of Coal Geology, 2016, 166:108-117. |
[16] | RAHMAN M W, RIMMER S M, ROWE H D. The impact of rapid heating by intrusion on the geochemistry and petrography of coals and organic-rich shales in the Illinois Basin[J]. International Journal of Coal Geology, 2018, 187:45-53. |
[17] | LIU J L, ZHANG J C, LI Z, et al. Gas-generation potential of shales in small and medium-sized basins: a case study from the Xuanhua Basin, north China[J]. Australian Journal of Earth Sciences, 2020, 67(3):411-424. |
[18] | CARSLAW H S, JAEGER J C. Conduction of heat in solids[M]. Oxford: Oxford University Press, 1959. |
[19] | BARKER C E, BONE Y, LEWAN M D. Fluid inclusion and vitrinite-reflectance geothermometry compared to heat-flow models of maximum paleotemperature next to dikes, western onshore Gippsland Basin, Australia[J]. International Journal of Coal Geology, 1998, 37:73-111. |
[20] | FJELDSKAAR W, HELSET H M, JOHANSEN H, et al. Thermal modelling of magmatic intrusions in the Gjallar Ridge, Norwegian Sea: implications for vitrinite reflectance and hydrocarbon maturation[J]. Basin Research, 2008, 20(1):143-159. |
[21] | SWEENEY J J, BURNHAM A K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics[J]. AAPG Bulletin, 1990, 74(10):1559-1570. |
[22] | AARNES I, SVENSEN H, CONNOLLY J A D, et al. How contact metamorphism can trigger global climate changes: Modeling gas generation around igneous sills in sedimentary basins[J]. Geochimica et Cosmochimica Acta, 2010, 74(24):7179-7195. |
[23] | 王大勇, 陆现彩, 徐士进, 等. 沉积盆地内侵入岩席对富含有机质围岩热影响的热传输模型研究[J]. 南京大学学报(自然科学版), 2011, 47(1):45-50. |
[23] | WANG Dayong, LU Xiancai, XU Shijin, et al. Heat-transfer-model analysis of thermal effect of intrusive sills on organic-rich host rocks in sedimentary basins[J]. Journal of Nanjing University(Natural Sciences), 2011, 47(1):45-49. |
[24] | 阳生权, 阳军生. 岩体力学[M]. 北京: 机械工业出版社, 2012. |
[24] | YANG Shengquan, YANG Junsheng. Rock mechanics[M]. Beijing: China Machine Press, 2012. |
[25] | MIELKE P, K BAR, SASS I. Determining the relationship of thermal conductivity and compressional wave velocity of common rock types as a basis for reservoir characterization[J]. Journal of Applied Geophysics, 2017, 140:135-144. |
[26] | ZHANG S C, WANG X M, HAMMARLUND E U, et al. Orbital forcing of climate 1.4 billion years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12):1406-1413. |
[27] | 李怀坤, 陆松年, 李惠民, 等. 侵入下马岭组的基性岩床的锆石和斜锆石U-Pb精确定年——对华北中元古界地层划分方案的制约[J]. 地质通报, 2009, 28(10):1396-1404. |
[27] | LI Huaikun, LU Songnian, LI Huimin, et al. Zircon and beddeleyite U-Pb precision dating of basic rock sills intruding Xiamaling Formation, North China[J]. Geological Bulletin of China, 2009, 28(10):1396-1404 |
[28] | WANG Q H, YANG H, YANG D B, et al. Mid-Mesoproterozoic (~1.32 Ga) diabase swarms from the western Liaoning region in the northern margin of the North China Craton: Baddeleyite Pb-Pb geochronology, geochemistry and implications for the final breakup of the Columbia supercontinent[J]. Precambrian Research, 2014, 254:114-128. |
[29] | ZHANG S H, ZHAO Y, LI X H, et al. The 1.33~1.30 Ga Yanliao large igneous province in the North China Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton[J]. Earth and Planetary Science Letters, 2017, 465:112-125. |
[30] | RIEDIGER C L. Solid bitumen reflectance and rock-eval Tmax as maturation indices: an example from the “Nordegg Member”, Western Canada Sedimentary Basin[J]. International Journal of Coal Geology, 1993, 22(3-4):295-315. |
[31] | JACOB H. Classification, structure, genesis and practical importance of natural solid oil bitumen ("migrabitumen")[J]. International Journal of Coal Geology, 1989, 11(1):65-79. |
/
〈 | 〉 |