页岩气

川南海相页岩岩石相类型及“甜点”分布——以长宁双河剖面五峰组—龙马溪组为例

  • 王红岩 ,
  • 董大忠 ,
  • 施振生 ,
  • 邱振 ,
  • 卢斌 ,
  • 邵男 ,
  • 孙莎莎 ,
  • 张素荣
展开
  • 1.中国石油勘探开发研究院,北京 100083
    2.国家能源页岩气研发(实验)中心,北京 100083
    3.中国石油天然气股份有限公司科技管理部,北京 100007
王红岩(1971—),男,博士、教授级高级工程师,非常规油气地质。地址:北京市海淀区学院路20号北厂区1号楼,邮政编码:100083。E-mail: wanghongyan69@petrochina.com.cn

收稿日期: 2021-06-30

  网络出版日期: 2022-03-24

基金资助

中国石油科技部重大专项“海相页岩气勘探开发技术研究”(2021DJ1901)

Lithfacies and “sweet spot” interval of marine shale in southern Sichuan: A case study of Shuanghe Outcrop in Wufeng-Longmaxi Formation, Changning

  • Hongyan WANG ,
  • Dazhong DONG ,
  • Zhensheng SHI ,
  • Zhen QIU ,
  • Bin LU ,
  • Nan SHAO ,
  • Shasha SUN ,
  • Surong ZHANG
Expand
  • 1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
    2. National Energy Shale Gas R&D(Experiment) Center, Beijing 100083, China
    3. Technology Administration Department, PetroChina Company Limited, Beijing 100007, China

Received date: 2021-06-30

  Online published: 2022-03-24

摘要

综合应用笔石带标定、全大薄片照相、常规薄片光学显微镜观察、TOC(总有机碳含量)测试、X-衍射全岩组分测试及场发射扫描电镜观察等手段,系统研究了长宁页岩气示范区长宁双河剖面五峰组—龙马溪组黑色页岩的物质组成及分布、层理特征、物性及岩石相。研究结果表明,川南长宁双河剖面五峰组—龙马溪组黑色页岩主要为硅质页岩、钙质页岩和混合页岩,石英、碳酸钙和黏土矿物平均值分别为42.5 %、37.4 %和14.9 %,含有少量斜长石(平均2.5 %)、黄铁矿(平均2.7 %)和有机质(平均值5.6 %)。黑色页岩发育泥纹层和粉砂纹层,2类纹层可构成递变型水平层理、均质层理、条带状粉砂型水平层理、砂泥递变型水平层理和砂泥薄互层型水平层理5类层理类型。五峰组发育递变层水平层理和均质层理,龙马溪组发育条带状粉砂型水平层理、砂泥递变型水平层理和砂泥薄互层型水平层理。综合页岩矿物组成和层理类型,共划分出11类岩石相类型。长宁双河剖面“甜点”段分布于LM1段,发育条带状粉砂型水平层理页岩岩石相。“甜点”段具有高TOC含量和高硅质含量、高孔隙度、高渗透率及高水平渗透率/垂直渗透率比值、高有机质孔含量等特征。

本文引用格式

王红岩 , 董大忠 , 施振生 , 邱振 , 卢斌 , 邵男 , 孙莎莎 , 张素荣 . 川南海相页岩岩石相类型及“甜点”分布——以长宁双河剖面五峰组—龙马溪组为例[J]. 油气藏评价与开发, 2022 , 12(1) : 68 -81 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.01.006

Abstract

With the comprehensive application of the photography of full thin section, the optical microscope observation of small thin sections, TOC test, whole rocks X-ray composition test, physical property analysis and the observation of field emission scanning electron microscope, Ordovician Wufeng Formation amd Silurian Longmaxi Formation in Shuanghe Outcrop in Changning area are analyzed systematically. The results show that the black shale of Wufeng-Longmaxi Formation in Shuanghe Outcrop of Changning area in southern Sichuan Basin is mainly siliceous shale, calcareous shale and mixed shale, and the average values of quartz, calcium carbonate and clay minerals are 42.5 %, 37.4 % and 14.9 %, respectively, containing a small amount of plagioclase (average 2.5 %), pyrite (average 2.7 %) and organic matter (average 5.6 %). The black shale develops mud laminae and silty laminae, and these two types of laminae are composed of five bedding types: graded horizontal bedding, homogeneous bedding, banded silty sand horizontal bedding, sand mud graded horizontal bedding and sand mud thin interbedded horizontal bedding. Progressive horizontal bedding and homogeneity bedding are developed in Wufeng Formation, while strip silty sand horizontal bedding, sand-mud progressive horizontal bedding and sand-mud thin interbedded horizontal bedding are developed in Longmaxi Formation. On the basis of mineral composition and bedding types, eleven types of lithofacies are divided. LM1 member, which is the “sweet spot” interval in Shuanghe Outcrop in Changning area, is characterized by high TOC content, high siliceous content, high porosity, high permeability, high horizontal/vertical permeability ratio and high organic pore content. The strip silty sand horizontal bedding develops here.

参考文献

[1] SCHIEBER J. Possible indicators of microbial mat deposits in shales and sandstones: Examples from the Mid-Proterozoic Belt Supergroup, Montana, USA[J]. Sedimentary Geology, 1998, 120(1-4):105-124.
[2] SCHIEBER J. Distribution and deposition of mudstone facies in the Upper Devonian Sonyea Group of New York[J]. Journal of Sedimentary Research, 1999, 69(4):909-925.
[3] STOW D, HUC A, BERTRAND P. Depositional processes of black shales in deep water[J]. Marine and Petroleum Geology, 2001, 18(4):491-498.
[4] APLIN A C, MACQUAKER J H. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12):2031-2059.
[5] SCHIEBER J. Experimental testing of the transport-durability of shale lithics and its implications for interpreting the rock record[J]. Sedimentary Geology, 2016, 331:162-169.
[6] HICKEY J J, HENK B. Lithofacies summary of the Mississippian Barnett shale, mitchell 2 TP Sims well, Wise county, Texas[J]. AAPG Bulletin, 2007, 91(4):437-443.
[7] MACQUAKER J, GAWTHORPE R L. Mudstone lithofacies in the Kimmeridge Clay Formation, Wessex Basin, southern England; implications for the origin and controls of the distribution of mudstones[J]. Journal of Sedimentary Research, 1993, 63(6):1129-1143.
[8] 姜在兴, 梁超, 吴靖, 等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报, 2013, 34(6):1031-1039.
[8] JIANG Zaixing, LIANG Chao, WU Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6):1031-1039.
[9] LAZAR O R, BOHACS K M, MACQUAKER J, et al. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines[J]. Journal of Sedimentary Research, 2015, 85(3):230-246.
[10] 梁超, 姜在兴, 杨镱婷, 等. 四川盆地五峰组—龙马溪组页岩岩相及储集空间特征[J]. 石油勘探与开发, 2012, 39(6):691-698.
[10] LIANG Chao, JIANG Zaixing, YANG Yiting, et al. Characteristics of shale lithofacies and reservoir space of the Wufeng-Longmaxi Formation, Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(6):691-698.
[11] ABOUELRESH M O, SLATT R M. Lithofacies and sequence stratigraphy of the Barnett Shale in east-central Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96(1):1-22.
[12] WANG G, CARR T R. Organic-rich marcellus shale lithofacies modeling and distribution pattern analysis in the Appalachian Basin[J]. AAPG Bulletin, 2013, 97(12):2173-2205.
[13] LOUCKS R G, RUPPEL S C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4):579-601.
[14] 张顺, 刘惠民, 陈世悦, 等. 中国东部断陷湖盆细粒沉积岩岩相划分方案探讨—以渤海湾盆地南部古近系细粒沉积岩为例[J]. 地质学报, 2017, 91(5):1108-1119.
[14] ZHANG Shun, LIU Huimin, CHEN Shiyue, et al. Classification scheme for lithofacies of fine-grained sedimentary rocks in faulted basins of eastern China: Insights from the fine-grained sedimentary rocks in Paleoene, southern Bohai Bay Basin[J]. Acta Geologica Sinica, 2017, 91(5):1108-1119.
[15] 刘传联, 徐金鲤, 汪品先. 藻类勃发—湖相油源岩形成的一种重要机制[J]. 地质论评, 2001, 47(2):207-210.
[15] LIU Chuanlian, XU Jinli, WANG Pinxian. Algal blooms: the primary mechanism in the formation of lacustrine petroleum source rocks[J]. Geological Review, 2001, 47(2):207-210.
[16] MACQUAKER J H, BENTLEY S J, BOHACS K M. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: Reappraising sediment transport processes operating in ancient mudstone successions[J]. Geology, 2010, 38(10):947-950.
[17] MACQUAKER J H, KELLER M A, DAVIES S J. Algal blooms and "marine snow": Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments[J]. Journal of Sedimentary Research, 2010, 80(11):934-942.
[18] ANDERSON R Y, DEAN W E. Lacustrine varve formation through time[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988, 62(1-4):215-235.
[19] 王慧中, 梅洪明. 东营凹陷沙三下亚段油页岩中古湖泊学信息[J]. 同济大学学报:自然科学版, 1998, 26(3):315-319.
[19] WANG Huizhong, MEI Hongming. Paleolimnological information from the oil shale in the Lower part of Sha3 Formation, in Dongying Depression[J]. Journal of Tongji University(Natural Science), 1998, 26(3):315-319.
[20] 郭旭升. 南方海相页岩气“二元富集”规律—四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7):1209-1218.
[20] GUO Xusheng. Rules of two-factor enrichment for marine shale gas in southern China-understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7):1209-1218.
[21] 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014, 41(1):28-36.
[21] GUO Tonglou, ZHANG Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1):28-36.
[22] 腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44(1):69-78.
[22] BORJIGIN Tenger, SHEN Baojian, YU Lingjie, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1):69-78.
[23] 王玉满, 李新景, 董大忠, 等. 海相页岩裂缝孔隙发育机制及地质意义[J]. 天然气地球科学, 2016, 27(9):1602-1610.
[23] WANG Yuman, LI Xinjing, DONG Dazhong, et al. Development mechanism of fracture pores in marine shale and its geological significance[J]. Natural Gas Geoscience, 2016, 27(9):1602-1610.
[24] 冉波, 刘树根, 孙玮, 等. 四川盆地及周缘下古生界五峰组龙马溪组页岩岩相分类[J]. 地学前缘, 2016, 23(2):96.
[24] RAN Bo, LIU Shugen, SUN Wei, et al. Lithofacies classification of shales of the Lower Paleozoic Wufeng-Longmaxi Formations in the Sichuan Basin and its surrounding areas, China[J]. Earth Science Frontiers, 2016, 23(2):96.
[25] 王超, 张柏桥, 舒志国, 等. 四川盆地涪陵地区五峰组—龙马溪组海相页岩岩相类型及储层特征[J]. 石油与天然气地质, 2018, 39(3):485-497.
[25] WANG Chao, ZHANG Boqiao, SHU Zhiguo, et al. Lithofacies types and reservoir characteristics of marine shales of the Wufeng Formation-Longmaxi Formation in Fuling area, the Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(3):485-497.
[26] 施振生, 邱振, 董大忠, 等. 四川盆地巫溪2井龙马溪组含气页岩细粒沉积纹层特征[J]. 石油勘探与开发, 2018, 45(2):339-348.
[26] SHI Zhensheng, QIU Zhen, DONG Dazhong, et al. Laminae characteristics of gas-bearing shale fine-grained sediment of the Silurian Longmaxi Formation of Well Wuxi 2 in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(2):339-348.
[27] 王同, 杨克明, 熊亮, 等. 川南地区五峰组一龙马溪组页岩层序地层及其对储层的控制[J]. 石油学报, 2015, 36(8):915-925.
[27] WANG Tong, YANG Keliang, XIONG Liang, et al. Shale sequence stratigraphy of Wufeng-Longmaxi Formation in southern Sichuan and their control on reservoirs[J]. Acta Petrolei Sinica, 2015, 36(8):915-925.
[28] 郭英海, 李壮福, 李大华, 等. 四川地区早志留世岩相古地理[J]. 古地理学报, 2004, 6(1):20-29.
[28] GUO Yinghai, LI Zhuangfu, LI Dahua, et al. Lithofacies palaeogeography of the Early Silurian in Sichuan area[J]. Journal of Palaeogeography, 2004, 6(1):20-29.
[29] 赵圣贤, 杨跃明, 张鉴, 等. 四川盆地下志留统龙马溪组页岩小层划分与储层精细对比[J]. 天然气地球科学, 2016, 27(3):470-487.
[29] ZHAO Shengxian, YANG Yueming, ZHANG Jian, et al. Micro-layers division and fine reservoirs contrast of Lower Silurian Longmaxi Formation shale, Sichuan Basin, SW China[J]. Natural Gas Geoscience, 2016, 27(3):470-487.
[30] 周业鑫, 丁俊, 余谦, 等. 渝东北地区观音桥段沉积与有机碳同位素特征及其区域对比[J]. 地质学报, 2017, 91(5):1097-1107.
[30] ZHOU Yexin, DING Jun, YU Qian, et al. Sedimentary and organic carbon isotopic characteristics of the Kuanyinchiao Member in Northeastern Chongqing and its regional correlation[J]. Acta Geologica Sinica, 2017, 91(5):1097-1107.
[31] 樊隽轩, MELCHIN M J, 陈旭, 等. 华南奥陶—志留系龙马溪组黑色笔石页岩的生物地层学[J]. 中国科学:地球科学, 2012, 42(1):130-139.
[31] FAN Junxuan, MELCHIN M J, CHEN Xu, et al. Biostratigraphy and geography of the Ordovician-Silurian Lungmachi black shales in South China[J]. Scientia Sinica(Terrae), 2012, 42(1):130-139.
[32] WANG H Y, SHI Z S, ZHAO Q, et al. Stratigraphic framework of the Wufeng-Longmaxi shale in and around the Sichuan Basin, China: Implications for targeting shale gas[J]. Energy Geoscience, 2020, 1(3-4):124-133.
[33] MACQUAKER J, TAYLOR K G. A sequence-stratigraphic interpretation of a mudstone-dominated succession: the Lower Jurassic Cleveland Ironstone Formation, UK[J]. Journal of the Geological Society, 1996, 153(5):759-770.
[34] JOHNSON M E. Relationship of Silurian sea-level fluctuations to oceanic episodes and events[J]. GFF, 2006, 128(2):115-121.
[35] 施振生, 邱振. 海相细粒沉积层理类型及其油气勘探开发意义[J]. 沉积学报, 2021, 39(1):181-196.
[35] SHI Zhensheng, QIU Zhen. Main bedding types of marine fine-grained sediments and their significance for oil and gas exploration and development[J]. Acta Sedimentologica Sinica, 2021, 39(1):181-196.
[36] CAMPBELL C V. Lamina, laminaset, bed and bedset[J]. Sedimentology, 1967, 8(1):7-26.
[37] 施振生, 董大忠, 王红岩, 等. 含气页岩不同纹层及组合储集层特征差异性及其成因——以四川盆地下志留统龙马溪组一段典型井为例[J]. 石油勘探与开发, 2020, 47(4):829-840.
[37] SHI Zhensheng, DONG Dazhong, WANG Hongyan, et al. Reservoir characteristics and genetic mechanisms of gas-bearing shales with different laminae and laminae combinations: A case study of Member 1 of the Lower Silurian Longmaxi shale in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(4):829-840.
[38] MACQUAKER J H, TAYLOR K G, GAWTHORPE R L. High-resolution facies analyses of mudstones: Implications for paleoenvironmental and sequence stratigraphic interpretations of offshore ancient mud-dominated successions[J]. Journal of Sedimentary Research, 2007, 77(4):324-339.
[39] SCHIEBER J, SOUTHARD J, THAISEN K. Accretion of mudstone beds from migrating floccule ripples[J]. Science, 2007, 318(5857):1760-1763.
[40] 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1):1-10.
[40] JIN Zhijun, HU Zongquan, GAO Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1):1-10.
[41] 邹才能, 赵群, 董大忠, 等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12):1781-1796.
[41] ZOU Caineng, ZHAO Qun, DONG Dazhong, et al. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017, 28(12):1781-1796.
[42] 张士万, 孟志勇, 郭战峰, 等. 涪陵地区龙马溪组页岩储层特征及其发育主控因素[J]. 天然气工业, 2014, 34(12):16-24.
[42] ZHANG Shiwan, MENG Zhiyong, GUO Zhanfeng, et al. Characteristics and major controlling factors of shale reservoirs in the Longmaxi Fm, Fuling area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12):16-24.
[43] MUNNECKE A, CALNER M, HARPER D A, et al. Ordovician and Silurian sea-water chemistry, sea level, and climate: A synopsis[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 296(3-4):389-413.
[44] MELCHIN M J, MITCHELL C E, HOLMDEN C, et al. Environmental changes in the Late Ordovician-early Silurian: Review and new insights from black shales and nitrogen isotopes[J]. Geological Society of America Bulletin, 2013, 125(11-12):1635-1670.
[45] YAWAR Z, SCHIEBER J. On the origin of silt laminae in laminated shales[J]. Sedimentary Geology, 2017, 360:22-34.
[46] RAGUENEAU O, TRÉGUER P, LEYNAERT A, et al. A review of the Si cycle in the modern ocean: Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy[J]. Global and Planetary Change, 2000, 26(4):317-365.
[47] 戎嘉余, 陈旭, 王怿, 等. 奥陶—志留纪之交黔中古陆的变迁:证据与启示[J]. 中国科学:地球科学, 2011, 41(10):1407-1415.
[47] RONG Jiayu, CHEN Xu, WANG Yi, et al. Northward expansion of central Guizhou Oldland through the Ordovician and Silurian transition: Evidence and implications[J]. Scientia Sinica(Terrae), 2011, 41(10):1407-1415.
[48] 董大忠, 施振生, 孙莎莎, 等. 黑色页岩微裂缝发育控制因素——以长宁双河剖面五峰组—龙马溪组为例[J]. 石油勘探与开发, 2018, 45(5):763-774.
[48] DONG Dazhong, SHI Zhensheng, SUN Shasha, et al. Factors controlling microfractures in black shale: A case study of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Shuanghe Profile, Changning area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(5):763-774.
文章导航

/