致密气勘探

杭锦旗东部盒1段储层宏观非均质性与气藏类型关系研究

  • 范玲玲
展开
  • 中国石化华北油气分公司勘探开发研究院,河南 郑州 450006
范玲玲(1987—),女,硕士,助理研究员,从事油气勘探地质研究工作。地址:河南省郑州市中原区陇海西路199号,邮政编码:450006。E-mail: FLLLK520@163.com

收稿日期: 2021-09-10

  网络出版日期: 2022-05-07

基金资助

中国石化科研项目“鄂尔多斯盆地晚古生代盆地原型与油气成藏过程研究”(P21088-2)

Relation between macro-heterogeneity of reservoir and gas reservoir types of He-1 Member in eastern Hangjinqi

  • Lingling FAN
Expand
  • Research Institute of Exploration and Development, Sinopec North China Oil and Gas Company, Zhengzhou, Henan 450006, China

Received date: 2021-09-10

  Online published: 2022-05-07

摘要

针对鄂尔多斯盆地杭锦旗东部盒1段南部和北部砂岩储层宏观非均质性的差异性大及其与气藏类型的关系不明确的问题,以盒1段砂岩储层为研究对象,通过砂岩分类明确储层和隔层的识别标准,建立砂体组合样式。根据研究区储层发育特征,优选砂地比值、储地比值、隔层个数、隔层分布频数及分布密度表征盒1段储层宏观非均质性特征,对盒1段储层宏观非均质性与气藏类型的关系进行了研究。①将盒1段砂岩划分为3类,Ⅰ类储层箱型心滩微比Ⅱ类储层齿化箱型河道充填微相物性好;②建立了盒1段3种砂体组合模式,南部以Ⅰ类和Ⅱ类砂岩组合模式为主,北部以Ⅲ类砂体组合模式为主;③盒1段储层宏观非均质性呈现出南强北弱的特征;④南部储地比小于0.3,发育岩性气藏;北东部储地比大于0.3,储层连通性好,主要作为天然气运移通道,有利于形成构造气藏、构造—岩性复合气藏。整体上南部Ⅰ类储层含气性较北部好。研究结果表明:盒1段储层宏观非均质性南部强,北东部弱;储层宏观非均质性影响了气藏的类型,南部为岩性气藏区,北东部为构造—岩性复合气藏区,南部储地比小于0.3的Ⅰ类储层为井位部署有利目标区,为该区盒1段气藏勘探选区指明了方向。

本文引用格式

范玲玲 . 杭锦旗东部盒1段储层宏观非均质性与气藏类型关系研究[J]. 油气藏评价与开发, 2022 , 12(2) : 274 -284 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.02.002

Abstract

In order to solve the problems of the difference in macro-heterogeneity between the southern and northern sandstone reservoirs in the southern and northern He-1 Member of Hangjinqi, Ordos Basin, and the unclear relationship with gas reservoir types, the He-1 sandstone reservoir is taken as the research object and its identification criteria for reservoirs and compartments are defined by sandstone classification. Then, the sand body combination style is establish. And according to the development characteristics of the reservoir in the study area, the ratio of reservoir thickness to formation thickness, the ratio of reservoir thickness to formation thickness, the number of barriers, and the frequency and density of barriers are selected to characterize the characteristics of macro-heterogeneity of He-1 Member. The relation between the macro-heterogeneity and gas reservoir types is discussed. The researches are conducted as follows. ①The sandstone of the He-1 Member is divided into three types. The properties of the microfacies of box-shaped core beach in the type Ⅰ reservoir is better than that of the filling facies of the toothed box channel in the type Ⅱ reservoir. ②Three sand body assemblage modes of the He-1 Member are established. The southern part is dominated by the assemblage modes of type Ⅰ and type Ⅱ sandbody, and the northern part is dominated by the assemblage modes of type Ⅲ sandbody. ③The macro-heterogeneity of the reservoir in He-1 Member is strong in the south part and weak in the north part. ④Lithological gas reservoirs are developed in the south part with the ratio of reservoir thickness to formation thickness of less than 0.3. While the ratio of reservoir thickness to formation thickness of the north-east part is greater than 0.3 with good reservoir connectivity, which is mainly used as a natural gas migration channel and conducive to the formation of structural gas reservoirs and structural-lithological composite gas reservoirs. The gas-bearing capacity of type Ⅰ reservoirs in the south is better than that in the north. The conclusion is that the macro-heterogeneity of the reservoir of He-1 Member is strong in the south part and weak in the north-east part; the macro-heterogeneity of the reservoir affects the type of gas reservoirs, making the south part to be a lithologic gas reservoir area, and the north-east part to be a structure-lithological complex gas reservoir area. Type Ⅰ reservoirs with a ratio of reservoir thickness to formation thickness of less than 0.3 in the south part are the favorable target areas for well location deployment. It points out the direction for the selection of exploration area in He-1 gas reservoir.

参考文献

[1] 付金华, 范立勇, 刘新社, 等. 鄂尔多斯盆地天然气勘探新进展、前景展望和对策措施[J]. 中国石油勘探, 2019, 24(4):418-430.
[1] FU Jinhua, FAN Liyong, LIU Xinshe, et al. New progress, prospects and countermeasures of natural gas exploration in the Ordos Basin[J]. China Petroleum Exploration, 2019, 24(4): 418-430.
[2] 姚泾利, 胡新友, 范立勇, 等. 鄂尔多斯盆地天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10):1465-1474.
[2] YAO Jingli, HU Xinyou, FAN Liyong, et al. Natural gas geological conditions, resource potential and exploration direction in the Ordos Basin[J]. Natural Gas Geoscience, 2018, 29(10): 1465-1474.
[3] 何发岐, 王付斌, 张威, 等. 鄂尔多斯盆地北缘勘探思路转变与天然气领域重大突破[J]. 中国石油勘探, 2020, 25(6):39-49.
[3] HE Faqi, WANG Fubin, ZHANG Wei, et al. Transformation of exploration ideas and major breakthrough in natural gas discovery in the northern margin of the Ordos Basin[J]. China Petroleum Exploration, 2020, 25(6): 39-49.
[4] 刘俞佐, 石万忠, 刘凯, 等. 鄂尔多斯盆地杭锦旗东部地区上古生界天然气成藏模式[J]. 岩性油气藏, 2020, 32(3):56-67.
[4] LIU Yuzuo, SHI Wanzhong, LIU Kai, et al. Natural gas accumulation model of Upper Paleozoic in the eastern part of Hangjinqi, Ordos Basin[J]. Lithologic Reservoirs, 2020, 32(3): 56-67.
[5] 李良, 袁志祥, 惠宽洋, 等. 鄂尔多斯盆地北部上古生界天然气聚集规律[J]. 石油与天然气地质, 2000, 21(3):268-282.
[5] LI Liang, YUAN Zhixiang, HUI Kuanyang, et al. Natural gas accumulation law of the Upper Paleozoic in the northern Ordos Basin[J]. Oil & Gas Geology, 2000, 21(3): 268-282.
[6] 张威, 李良, 贾会冲. 鄂尔多斯盆地杭锦旗地区十里加汗区带下石盒子组1段岩性圈闭成藏动力及气水分布特征[J]. 石油与天然气地质, 2016, 37(2):189-196.
[6] ZHANG Wei, LI Liang, JIA Huichong. Lithological trap formation dynamics and gas-water distribution characteristics of the 1st member of Shihezi Formation in Shilijiahan area, Hangjinqi area, Ordos Basin[J]. Oil & Gas Geology, 2016, 37(2): 189-196.
[7] 罗晓容, 张立强, 张立宽, 等. 碎屑岩输导层非均质性与油气运聚成藏[J]. 石油学报, 2020, 41(3):253-272.
[7] LUO Xiaorong, ZHANG Liqiang, ZHANG Likuan, et al. The heterogeneity of the clastic rock transport layer and hydrocarbon migration and accumulation[J]. Acta Petrolei Sinica, 2020, 41(3): 253-272.
[8] 赵文智, 张光亚, 王红军. 石油地质理论新进展及其在拓展勘探领域中的意义[J]. 石油学报, 2005, 26(1):1-7.
[8] ZHAO Wenzhi, ZHANG Guangya, WANG Hongjun. New achievements of petroleum geology theory and its significances on expanding oil and gas exploration field[J]. Acta Petrolei Sinica, 2005, 26(1): 1-7.
[9] 赵文智, 胡素云, 李建忠, 等. 我国陆上油气勘探领域变化与启示--过去十余年的亲历与感悟[J]. 中国石油勘探, 2013, 18(4):1-10.
[9] ZHAO Wenzhi, HU Suyun, LI Jianzhong, et al. Changes and enlightenment of onshore oil/gas exploration domain in China-experience and perception in the past decade[J]. China Petroleum Exploration, 2013, 18(4): 1-10.
[10] 程付启, 宋国奇, 刘雅利, 等. 连续型油气藏聚集与形成机理--以渤南洼陷中心区沙河街组四段上亚段为例[J]. 石油学报, 2015, 36(11):1349-1357.
[10] CHENG Fuqi, SONG Guoqi, LIU Yali, et al. Accumulation and formation mechanism of continuous hydrocarbon reservoirs: A case study of Upper Member 4 of Shahejie Formation, central Bonan sub-sag[J]. Acta Petrolei Sinica, 2015, 36(11): 1349-1357.
[11] STENGER B A, PHAM T R, AL-SAHHAF A A, et al. Assessing the oil water contact in Haradh Arab-D[C]// Paper SPE-71339-MS presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, September 2001.
[12] 孙镇城, 党玉琪, 乔子真, 等. 柴达木盆地第四系倾斜式气藏的形成机理[J]. 中国石油勘探, 2003, 8(4):41-44.
[12] SUN Zhencheng, DANG Yuqi, QIAO Zizhen, et al. Forming mechanism of gas reservoirs with inclined gas-water interface of quaternary in Qaidam Basin[J]. China Petroleum Exploration, 2003, 8(4): 41-44.
[13] 江同文, 徐汉林, 练章贵, 等. 倾斜油水界面成因分析与非稳态成藏理论探索[J]. 西南石油大学学报, 2008, 30(5):1-5.
[13] JIANG Tongwen, XU Hanlin, LIAN Zhanggui, et al. Origin of tilted oil-water contact and probe into the theory of unsteady hydrocarbon accumulation[J]. Journal of Southwest Petroleum University, 2008, 30(5): 1-5.
[14] YANG Y, MAHMOUD K A. Equation for defining hydrodynamic oil-water contact surface and an alternative approach, “structure surface transformation” for mapping hydrodynamic traps[J]. Marine and Petroleum Geology, 2016, 78: 701-711.
[15] 杨春梅, 刘卫东, 梁忠奎. 渤海湾盆地中、浅层非典型油气藏的非均质控油作用[J]. 特种油气藏, 2009, 16(3):18-22.
[15] YANG Chunmei, LIU Weidong, LIANG Zhongkui. Control of heterogeneity on non-typical hydrocarbon reservoirs in middle-shallow Bohai Bay Basin[J]. Special Oil & Gas Reservoirs, 2009, 16(3): 18-22.
[16] 张小莉, 查明, 王鹏. 单砂体高部位油水倒置分布的成因机制[J]. 沉积学报, 2006, 24(1):148-152.
[16] ZHANG Xiaoli, ZHA Ming, WANG Peng. Oil/water inversion and its genetic mechanism in the higher portions of the single sandstone body[J]. Acta Sedimentologica Sinica, 2006, 24(1): 148-152.
[17] UNDERSCHULTZ J. Pressure distribution in a reservoir affected by capillarity and hydrodynamic drive: Griffin Field, North West Shelf, Australia[J]. Geofluids, 2005, 5(3): 221-235.
[18] LUO X R, HU C Z, XIAO Z Y, et al. Effects of carrier bed heterogeneity on hydrocarbon migration[J]. Marine and Petroleum Geology, 2015, 68(A): 120-131.
[19] XUE Y A, DENG Y H, WANG D Y, et al. Hydrocarbon accumulation conditions and key exploration and development technologies for PL 19-3 oilfield[J]. Petroleum Research, 2019, 4(1): 23.
[20] 孙晓. 什股壕地区上古生界天然气运聚特征与成藏机理探讨[J]. 石油地质与工程, 2016, 30(5):17-21.
[20] SUN Xiao. Discussion on the characteristics of natural gas migration and accumulation and accumulation mechanism of Upper Paleozoic in Shiguhao area[J]. Petroleum Geology and Engineering, 2016, 30(5): 17-21.
[21] 贾承造, 赵文智, 邹才能, 等. 岩性地层油气藏地质理论与勘探技术[M]. 北京: 石油工业出版社, 2008.
[21] JIA Chengzao, ZHAO Wenzhi, ZOU Caineng, et al. Geological theory and exploration technology for lithostratigraphic hydrocarbon reservoirs[M]. Beijing: Petroleum Industry Press, 2008.
[22] 裘亦楠, 薛叔浩. 油气储层评价技术[M]. 北京: 石油工业出版社, 2001.
[22] QIU Yinan, XUE Shuhao. Oil and gas reservoir evaluation technology[M]. Beijing: Petroleum Industry Press, 2001.
[23] 罗晓容, 雷裕红, 张立宽, 等. 油气运移输导层研究及量化表征方法[J]. 石油学报, 2012, 33(3):428-436.
[23] LUO Xiaorong, LEI Yuhong, ZHANG Likuan, et al. Research and quantitative characterization method of oil and gas migration and transport layer[J]. Acta Petrolei Sinica, 2012, 33(3): 428-436.
[24] 刘金华, 葛政俊, 王韵致, 等. 一种超强非均质油气储层非均质性表征方法:CN 110242291A[P]. 2019-09-17.
[24] LIU Jinhua, GE Zhengjun, WANG Yunzhi, et al. A method for characterizing the heterogeneity of super heterogeneous oil and gas reservoirs: CN 110242291A[P]. 2019-09-17.
文章导航

/