致密气勘探

基于VBM方法的油气藏高精度地层格架建模——以川西坳陷新场构造带须二段为例

  • 商晓飞 ,
  • 王鸣川 ,
  • 李蒙 ,
  • 赵磊
展开
  • 中国石化石油勘探开发研究院,北京 100083
商晓飞(1986—),男,博士,副研究员,主要从事沉积地质学和油气藏描述研究。地址:北京市海淀区学院路31号,邮政编码:100083。E-mail: shangxf.syky@sinopec.com

收稿日期: 2021-04-22

  网络出版日期: 2022-05-07

基金资助

中国石化科技部项目“须家河组气藏描述与地质建模”(P18089-3)

High precision stratigraphic framework modeling for oil and gas reservoirs based on VBM algorithm: A case study of Xu2 Formation in Xinchang tectonic zone, western Sichuan Depression

  • Xiaofei SHANG ,
  • Mingchuan WANG ,
  • Meng LI ,
  • Lei ZHAO
Expand
  • Sinopec Petroleum Exploration & Production Research Institute, Beijing 100083, China

Received date: 2021-04-22

  Online published: 2022-05-07

摘要

川西坳陷新场地区须家河组受多期构造运动叠加,地层起伏较大,总体呈“马鞍”形特征,同时发育多组逆断层,断穿层位各异,断层交切关系多样。常规的建模方法不能精确表征该区复杂的构造-地层特征,模型难以满足实际生产需要。因此,采用VBM建模方法对新场须二气藏进行了构造地层模型建立。依据地震解释数据和钻井分层信息,获取须二段层面和断层控制数据。建立断层框架模型,精细调整断面形态和断层交切关系。以层面数据为输入数据,计算每一砂组的地层厚度,恢复并构建原状地层模型。利用断层与层面的相关参数控制,精准调控断层与层面之间的关系,实现现今构造-地层格架模型的建立。结果表明:VBM方法通过体积守恒原理和非结构化网格表征技术,对复杂构造模型能够做到精准刻画,较好处理复杂的地层接触和断层展布问题。新建立的地层格架模型相比传统角点网格建立的模型具有更高的网格质量,且保持了复杂断层处的断层组合关系以及层序地层特征,为后续的储层地质建模提供了更可靠的模型框架基础。

本文引用格式

商晓飞 , 王鸣川 , 李蒙 , 赵磊 . 基于VBM方法的油气藏高精度地层格架建模——以川西坳陷新场构造带须二段为例[J]. 油气藏评价与开发, 2022 , 12(2) : 302 -312 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.02.005

Abstract

The Xujiahe Formation in Xinchang area of western Sichuan Depression has experienced multiple periods of tectonic movement superposition. The stratigraphic deformation is significant, and the whole stratum is characterized by “saddle” shape. In addition, several groups of reverse faults are developed, with different fault broken horizons and diverse fault crosscutting relationships. However, the conventional modeling methods can not accurately describe the complex structure-stratigraphic characteristics of the area, and the model is difficult to meet the actual production needs. Therefore, the VBM modeling method is used to establish the structural-stratigraphic framework model of Xu2 gas reservoir in Xinchang area. Based on the analysis of sedimentary and filling characteristics in the study area, the sequence stratigraphic framework is clarified. Then, the horizon and fault data are obtained based on seismic interpretation data and drilling stratification information to establish the model of fault frame and finely adjust the relation between sectional shape and cross section. The horizon model is used as the input data to calculate the stratigraphic thickness of each sand group, and to restore and construct the original formation model. The present structural-stratigraphic framework model can be established by accurately regulating the relation between faults and horizons by controlling the relevant parameters of them. The results show that VBM method can accurately describe complex structural model through volume conservation principle and tetrahedron grid characterization technology, and better deal with complex formation contact and fault distribution problems. The new stratigraphic framework model has higher grid quality than the traditional corner grid model, and the combination relation and sequence stratigraphic characteristics are maintained in the complex faults. This structural-stratigraphic model provides a more reliable model framework for the subsequent reservoir geological modeling.

参考文献

[1] 张文彪, 段太忠, 刘彦锋, 等. 定量地质建模技术应用现状与发展趋势[J]. 地质科技情报, 2019, 38(3):270-281.
[1] ZHANG Wenbiao, DUAN Taizhong, LIU Yanfeng, et al. Application status and development trend of quantitative geological modeling[J]. Geological Science and Technology Information, 2019, 38(3): 270-281.
[2] 段太忠, 王光付, 廉培庆, 等. 油气藏定量地质建模方法与应用[M]. 北京: 石油工业出版社, 2019,1-17.
[2] DUAN Taizhong, WANG Guangfu, LIAN Peiqing, et al. Quantitative geological modeling method and application of oil and gas reservoir[M]. Beijing: Petroleum Industry Press, 2019: 1-17.
[3] 王玉岩. 石油勘探三维地质构造建模技术探讨[J]. 西部探矿工程, 2020, 32(5):79-83.
[3] WANG Yuyan. Discussion on 3D geological structure modeling technology for petroleum exploration[J]. West-China Exploration Engineering, 2020, 32(5): 79-83.
[4] 毛凤军, 姜虹, 欧亚菲, 等. 尼日尔Termit盆地三维地质构造建模研究与应用[J]. 地学前缘, 2018, 25(2):62-71.
[4] MAO Fengjun, JIANG Hong, OU Yafei, et al. 3D structural modeling and its application in the Termit Basin, Niger[J]. Earth Science Frontiers, 2018, 25(2): 62-71.
[5] 管树巍, 何登发. 复杂构造建模的理论与技术架构[J]. 石油学报, 2011, 32(6):991-999.
[5] GUAN Shuwei, HE Dengfa. Theories and technical frameworks of complex structural modeling[J]. Acta Petrolei Sinica, 2011, 32(6): 991-999.
[6] 邹起阳, 闫振华, 徐阳东. 应用Petrel进行构造建模的研究[J]. 长江大学学报(自然科学版), 8(2):62-64.
[6] ZOU Qiyang, YAN Zhenhua, XU Yangdong. Structure modeling using PETREL software[J]. Journal of Yangtze University(Natural Science Edition), 8(2): 62-64.
[7] 何紫兰, 朱鹏飞, 白芸, 等. 复杂地质体三维实体建模方法[J]. 地质与勘探, 2020, 56(1):190-197.
[7] HE Zilan, ZHU Pengfei, BAI Yun, et al. 3D solid modeling method for complex geological bodies[J]. Geology and Exploration, 2020, 56(1): 190-197.
[8] 刘殊, 任兴国, 姚声贤, 等. 四川盆地上三叠统须家河组气藏分布与构造体系的关系[J]. 天然气工业, 2018, 38(1):1-14.
[8] LIU Shu, REN Xingguo, YAO Shengxian, et al. Relationship between gas reservoir distribution and structural system of Upper Triassic Xujiahe Fm in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(1): 1-14.
[9] 雍自权, 刘庆松, 李倩. 川西前陆盆地的发展演化、地层充填及其对油气成藏的意义[J]. 天然气工业, 2008, 28(2):26-29.
[9] YONG Ziquan, LIU Qingsong, LI Qian. Evolution and sediment filling of Western Sichuan Foreland Basin and their significance of hydrocarbon accumulation[J]. Natural Gas Industry, 2008, 28(2): 26-29.
[10] 陈洪德, 徐胜林, 林良彪, 等. 龙门山造山带晚三叠世构造隆升的分段性及层序充填响应[J]. 沉积学报, 2011, 29(4):622-630.
[10] CHEN Hongde, XU Shenglin, LIN Liangbiao, et al. Segmental uplift of Longmenshan orogen and sequence filling characteristics of Western Sichuan Foreland-like Basin, later Triassic[J]. Acta Sedimentologica Sinica, 2011, 29(4): 622-630.
[11] 刘君龙, 纪友亮, 杨克明, 等. 川西须家河组前陆盆地构造层序及沉积充填响应特征[J]. 中国石油大学学报(自然科学版), 2015, 39(6):11-23.
[11] LIU Junlong, JI Youliang, YANG Keming, et al. Tectono-stratigraphy and sedimentary infill characteristics of Xujiahe Formation in western Sichuan foreland basin[J]. Journal of China University of Petroleum(Edition of Natural Science), 2015, 39(6): 11-23.
[12] 陈竹新, 贾东, 魏国齐, 等. 川西前陆盆地中-新生代沉积迁移与构造转换[J]. 中国地质, 2008, 35(3):472-481.
[12] CHEN Zhuxin, JIA Dong, WEI Guoqi, et al. Meso-Cenozoic sediment transport and tectonic transition in the western Sichuan foreland basin[J]. Geology in China, 2008, 35(3): 472-481.
[13] 罗启后. 安县运动对四川盆地中西部上三叠统地层划分对比与油气勘探的意义[J]. 天然气工业, 2011, 31(6):21-27.
[13] LUO Qihou. Significance of the Anxian Movement to the stratigraphic division and correlation of the Upper Triassic formations and their hydrocarbon exploration in the wester-central Sichuan Basin[J]. Natural Gas Industry, 2011, 31(6): 21-27.
[14] 于福生, 王彦华, 李晓剑, 等. 川西坳陷孝泉-丰谷构造带变形特征及成因机制模拟[J]. 地球科学与环境学报, 2011, 33(1):45-53.
[14] YU Fusheng, WANG Yanhua, LI Xiaojian, et al. Deformation characteristics and genetic simulation of Xiaoquan-Fenggu structural belt in West Sichuan Depression[J]. Journal of Earth Science and Environment, 2011, 33(1): 45-53.
[15] 刘忠群, 徐士林, 刘君龙, 等. 四川盆地川西坳陷深层致密砂岩气藏富集规律[J]. 天然气工业, 2020, 40(2):31-40.
[15] LIU Zhongqun, XU Shilin, LIU Junlong, et al. Enrichment laws of deep tight sandstone gas reservoirs in the Western Sichuan Depression, Sichuan Basin[J]. Natural Gas Industry, 2020, 40(2): 31-40.
[16] 魏国齐, 杨威, 刘满仓, 等. 四川盆地大气田分布、主控因素与勘探方向[J]. 天然气工业, 2019, 39(6):1-12.
[16] WEI Guoqi, YANG Wei, LIU Mancang, et al. Distribution rules, main controlling factors and exploration directions of giant gas fields in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(6): 1-12.
[17] 张世华, 田军, 叶素娟, 等. 断层输导型天然气成藏模式的动态成藏过程--以川西坳陷新场构造带上三叠统须二段气藏为例[J]. 天然气工业, 2019, 39(7):49-56.
[17] ZHANG Shihua, TIAN Jun, YE Sujuan, et al. Dynamic accumulation process of fault-translocation natural gas accumulation model: A case study on the gas reservoir of the second member of Upper Triassic Xujiahe Formation in the Xinchang structural zone of the Western Sichuan Depression[J]. Natural Gas Industry, 2019, 39(7): 49-56.
[18] 马旭杰, 周文, 唐瑜, 等. 川西新场地区须家河组二段气藏天然裂缝形成期次的确定[J]. 天然气工业, 2013, 33(8):15-19.
[18] MA Xujie, ZHOU Wen, TANG Yu, et al. Timing of natural fractures formed in the gas reservoirs of the 2nd member of Xujiahe Formation in the Xinchang area, western Sichuan Basin[J]. Natural Gas Industry, 2013, 33(8): 15-19.
[19] 杨克明. 四川盆地“新场运动”特征及其地质意义[J]. 石油实验地质, 2014, 36(4):391-397.
[19] YANG Keming. Characteristics of Xinchang movement in Sichuan Basin and its geological significance[J]. Petroleum Geology & Experiment, 2014, 36(4): 391-397.
[20] 田军, 张世华, 叶素娟, 等. 川西坳陷新场构造带须二段气藏类型划分及成藏主控因素[J]. 成都理工大学学报(自然科学版), 2017, 44(6):659-667.
[20] TIAN Jun, ZHANG Shihua, YE Sujuan, et al. Classification of gas accumulation types and main controlling factors of gas accumulation of the Xu-2 Member in Xinchang structural zone, western Sichuan Depression, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2017, 44(6): 659-667.
[21] 刘君龙, 刘忠群, 肖开华, 等. 四川盆地新场地区三叠系须家河组二段致密砂岩有利岩石相表征及油气地质意义[J]. 石油勘探与开发, 2020, 47(6):1111-1121.
[21] LIU Junlong, LIU Zhongqun, XIAO Kaihua, et al. Characterization of favorable lithofacies in tight sandstone reservoirs and its significance for gas exploration and exploitation: A case study of the 2nd Member of Triassic Xujiahe Formation in the Xinchang area, Sichuan Basin[J]. Petroleum Exploration and Development, 2020, 47(6): 1111-1121.
[22] SOUCHE L, LEPAGE F, ISKENOVA G. Volume based modeling-Automated construction of complex structural models[C]// Paper presented at the 75th EAGE conference and exhibition incorporating, SPE EUROPEC, London, UK, 2013.
文章导航

/