油气藏评价与开发 >
2022 , Vol. 12 >Issue 2: 382 - 390
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2022.02.014
注水压力和溶洞内压对水力裂缝扩展影响模拟研究
收稿日期: 2021-03-03
网络出版日期: 2022-05-07
基金资助
国家自然科学基金“页岩气开采水力压裂过程中裂缝网络形成机理及模拟分析方法”(41602296)
Numerical simulation of influence of water injection pressure and cave internal pressure on fracture propagation
Received date: 2021-03-03
Online published: 2022-05-07
溶洞是缝洞型碳酸盐岩油藏中主要的储集空间,开采缝洞型油藏的基本思路是通过水力压裂产生裂缝沟通井眼和溶洞。基于TOUGH-AiFrac耦合求解器,分别研究了不同注水压力和溶洞内压对水力裂缝扩展的影响规律。结果表明,随着注水压力的增加,水力裂缝受地应力的影响逐渐减弱,更加倾向于沿着初始方向起裂并扩展。当注水压力大于1.6倍水平最大主应力时,裂缝起裂方向变化幅度明显减小,起裂方向趋于稳定;注水压力大于2.4倍水平最大主应力时,裂缝扩展形态趋于稳定。溶洞内压越大,溶洞对水力裂缝的作用越强,内部压力达到2倍水平最大主应力的溶洞对水力裂缝存在吸引作用,且其吸引作用随着溶洞内压的增加而增强,随着注水压力的增加而减弱。研究成果对于根据储层地质条件优化压裂作业参数提高采收率具有一定的指导意义。
关键词: 裂缝扩展; 注水压力; 溶洞内压; TOUGH-AiFrac; 缝洞型油藏
叶燊 , 乔江美 , 李同春 . 注水压力和溶洞内压对水力裂缝扩展影响模拟研究[J]. 油气藏评价与开发, 2022 , 12(2) : 382 -390 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.02.014
The cave is the main reserve space in fracture-cavity carbonate reservoir. The basic method of fracture-cavity reservoirs exploitation is to generate hydraulic fractures connecting the boreholes and caves through hydraulic fracturing. Based on the TOUGH-AiFrac coupling solver, the influence of different water injection pressures and internal pressure of caves on hydraulic fracture propagation is studied respectively. The results show that with the increase of water injection pressure, the influence of in-situ stress on hydraulic fractures is gradually weakened, and the fractures tend to initiate and propagate along the initial direction. When the water injection pressure is 1.6 times greater than the horizontal maximum principal stress, the rangeability of the fracture initiation directions weaken obviously, and the fracture direction tends to be stable. When the water injection pressure is 2.4 times greater than the horizontal maximum principal stress, the fracture propagation path tends to be stable. The greater internal pressure of the caves, the stronger the cave’s effect on hydraulic fractures. The caves with internal pressure reaching two times of the maximum principal stress exert a kind of “attraction” effect on the hydraulic fractures, which will be gradually strengthened with the increase of cave’s internal pressure while be weakened with the increase of injection pressure. The research results can be used as a guideline to optimize the fracturing work parameters and thereby enhance the oil/gas production rate according to the geological conditions.
[1] | 王建坡, 沈安江, 蔡习尧, 等. 全球奥陶系碳酸盐岩油气藏综述[J]. 地层学杂志, 2008, 32(4):363-373. |
[1] | WANG Jianpo, SHEN Anjiang, CAI Xiyao, et al. A review of the Ordovician carbonate reservoirs in the world[J]. Journal of Stratigraphy, 2008, 32(4): 363-373. |
[2] | 江怀友, 宋新民, 王元基, 等. 世界海相碳酸盐岩油气勘探开发现状与展望[J]. 海洋石油, 2008, 28(4):6-13. |
[2] | JIANG Huaiyou, SONG Xinmin, WANG Yuanji, et al. Current situation and forecast of the world's carbonate oil and gas exploration and development[J]. Offshore Oil, 2008, 28(4): 6-13. |
[3] | 谢锦龙, 黄冲, 王晓星. 中国碳酸盐岩油气藏探明储量分布特征[J]. 海相油气地质, 2009, 14(2):24-30. |
[3] | XIE Jinlong, HUANG Chong, WANG Xiaoxing. Distribution features of proved reserves of carbonate oil and gas pools in China[J]. Marine Origin Petroleum Geology, 2009, 14(2): 24-30. |
[4] | 李阳, 康志江, 薛兆杰, 等. 中国碳酸盐岩油气藏开发理论与实践[J]. 石油勘探与开发, 2018, 45(4):669-678. |
[4] | LI Yang, KANG Zhijiang, XUE Zhaojie, et al. Theories and practices of carbonate reservoirs development in China[J]. Petroleum Exploration and Development, 2018, 45(4): 669-678. |
[5] | LIU Z Y, TANG X H, TAO S, et al. Mechanism of connecting natural caves and wells through hydraulic fracturing in fracture-cavity reservoirs[J]. Rock Mechanics and Rock Engineering, 2020, 53(4): 5511-5530. |
[6] | 李溢龙, 吴锋, 杨强, 等. 缝洞型碳酸盐岩油藏注水开发研究[J]. 石油化工应用, 2015, 34(5):32-35. |
[6] | LI Yilong, WU Feng, YANG Qiang, et al. The research of water injection development for fractured-vuggy carbonate reservoir[J]. Petrochemical Industry Application, 2015, 34(5): 32-35. |
[7] | 吴拥政, 杨建威. 煤矿砂岩横向切槽真三轴定向水力压裂试验[J]. 煤炭学报, 2020, 45(3):927-935. |
[7] | WU Yongzheng, YANG Jianwei. True tri-axial directional hydraulic fracturing test on sandstone with transverse grooves in coal mine[J]. Journal of China Coal Society, 2020, 45(3): 927–935. |
[8] | 邵长跃, 潘鹏志, 赵德才, 等. 流量对水力压裂破裂压力和增压率的影响研究[J]. 岩土力学, 2020, 41(7):1-12 |
[8] | SHAO Changyue, PAN Pengzhi, ZHAO Decai, et al. Study on the effect of pumping rate on hydraulic fracturing breakdown pressure and pressurization rate[J]. Rock and Soil Mechanics, 2020, 41(7): 1-12. |
[9] | 姜浒, 陈勉, 张广清, 等. 定向射孔对水力裂缝起裂与延伸的影响[J]. 岩石力学与工程学报, 2009, 28(7):1321-1326. |
[9] | JIANG Hu, CHEN Mian, ZHANG Guangqing, et al. Impact of oriented perforation on hydraulic fracture initiation and propagation[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(7): 1321-1326. |
[10] | 陈勉, 庞飞, 金衍. 大尺寸真三轴水力压裂模拟与分析[J]. 石力学与工程学报, 2000, 20(S1):868-872. |
[10] | CHEN Mian, PANG Fei, JIN Yan. Experiments and analysis on hydraulic fracturing by a large-size triaxial simulator[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 20(S1): 868-872. |
[11] | 翁振, 张耀峰, 伍轶鸣, 等. 储层溶洞对水力裂缝扩展路径影响的实验研究[J]. 油气藏评价与开发, 2019, 9(6):42-46. |
[11] | WENG Zhen, ZHANG Yaofeng, WU Yiming, et al. Experimental study on effects of caves in reservoirs on hydraulic fractures propagation[J]. Petroleum Reservoir Evaluation and Development, 2019, 9(6): 42-46. |
[12] | 王学敏. 水力压裂参数对顶板裂缝扩展影响的数值模拟研究[J]. 同煤科技, 2020, 42(2):14-16. |
[12] | WANG Xuemin. Numerical simulation study on the influence of hydraulic fracturing parameters on roof fracture propagation[J]. Datong Coal Science & Technology, 2020, 42(2): 14-16. |
[13] | 龚迪光, 曲占庆, 李建雄, 等. 基于ABAQUS平台的水力裂缝扩展有限元模拟研究[J]. 岩土力学, 2016, 37(5):1512-1520. |
[13] | GONG Diguang, QU Zhanqing, LI Jianxiong, et al. Extended finite element simulation of hydraulic fracture based on ABAQUS platform[J]. Rock and Soil Mechanics, 2016, 37(5): 1512-1520. |
[14] | 唐巨鹏, 齐桐. 压裂液流速对页岩体积压裂裂缝扩展影响分析[J]. 辽宁工程技术大学学报:自然科学版, 2019, 38(1):44-51. |
[14] | TANG Jupeng, QI Tong. Analysis of fracturing fluid flow velocity influence on shale volume fracturing crack propagation[J]. Journal of Liaoning Technical University(Natural Science), 2019, 38(1): 44-51. |
[15] | 白凯华. 基于ABAQUS的低渗透储层水力压裂数值模拟研究[D]. 西安:西安石油大学, 2019. |
[15] | BAI Kaihua. Numerical simulation of hydraulic fracturing in low permeability reservoir based on ABAQUS[D]. Xi’an: Xi’an Shiyou University, 2019. |
[16] | 徐成. 泵流量对纵向切槽水力压裂裂缝偏转距的影响规律研究[D]. 北京:煤炭科学研究总院, 2019. |
[16] | XU Cheng. Study on the influence of pump flow rate on the deflection of hydraulic fracturing cracks in longitudinal flume cutting[D]. Beijing: China Coal Research Institute, 2019. |
[17] | 潘林华, 张士诚, 张劲, 等. 缝洞型碳酸盐岩裂缝扩展分析[J]. 科学技术与工程, 2012, 12(12):2816-2819. |
[17] | PAN Linhua, ZHANG Shicheng, ZHANG Jin, et al. The analysis of hydraulic fracture propagation in fracture-cavity carbonate reservoirs[J]. Science Technology and Engineering, 2012, 12(12): 2816-2819. |
[18] | 王毓杰, 张振南, 牟建业, 等. 缝洞型碳酸盐岩油藏洞体与水力裂缝相互作用[J]. 地下空间与工程学报, 2019, 15(S1):175-181. |
[18] | WANG Yujie, ZHANG Zhennan, MOU Jianye, et al. Impact of cavity on hydraulic fracture in fracture-cavity carbonate reservoir[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(S1): 175-181. |
[19] | 李林地, 张士诚, 张劲, 等. 缝洞型碳酸盐岩储层水力裂缝扩展机理[J]. 石油学报, 2009, 30(4):570-573. |
[19] | LI Lindi, ZHANG Shicheng, ZHANG Jin, et al. Mechanism of hydraulic fracture propagation in fracture-cavity carbonate reservoirs[J]. Acta Petrolei Sinica, 2009, 30(4): 570-573. |
[20] | LIU Q S, SUN L, TANG X H, et al. Simulate intersecting 3D hydraulic cracks using a hybrid “FE-Meshfree” method[J]. Engineering Analysis with Boundary Elements, 2018, 91: 24-43. |
[21] | 张耀峰, 邵祖亮, 王涛, 等. 基于FEMM的径向井压裂裂缝扩展模拟研究[J]. 油气藏评价与开发, 2020, 10(1):102-107. |
[21] | ZHANG Yaofeng, SHAO Zuliang, WANG Tao, et al. Research on fracture propagation of radial well fracturing based on finite element-meshfree method[J]. Petroleum Reservoir Evaluation and Development, 2020, 10(1): 102-107. |
/
〈 | 〉 |