页岩气勘探

基于井震结合的南川地区页岩气储层叠后裂缝预测技术

  • 孙小琴
展开
  • 中国石化上海海洋油气分公司勘探开发研究院,上海 200120
孙小琴(1983—),女,硕士,助理研究员,主要从事地震解释和储层预测工作。地址:上海市浦东新区商城路1225号,邮政编码:200120。E-mail: sxq-3033@163.com

收稿日期: 2021-03-15

  网络出版日期: 2022-06-24

基金资助

“十三五”国家科技重大专项“彭水地区常压页岩气勘探开发示范工程”(2016ZX05061);中国石化科技项目“南川复杂构造带页岩气勘探开发关键技术”(P19017-3)

Poststack fracture prediction technology of shale gas reservoir based on combination of well and seismic in Nanchuan

  • Xiaoqin SUN
Expand
  • Research Institute of Exploration and Development, Sinopec Offshore Shanghai Oil & Gas Branch, Shanghai 200120, China

Received date: 2021-03-15

  Online published: 2022-06-24

摘要

页岩气储层天然裂缝发育,页岩裂缝对储层改造和后期压裂效果影响很大。基于井震结合的蚂蚁追踪技术进行裂缝预测,首先通过测井解释的天然裂缝,计算出井的裂缝发育密度曲线,然后通过多种模拟方法比较,选取高斯随机方法,该算法能体现页岩储层裂缝发育的非均质性特征,建立井间天然裂缝模型,最后通过协克里金算法体现井间裂缝发育属性,输入蚂蚁体属性进行质控,从而建立南川地区天然裂缝的预测模型。从预测结果来看,南川地区裂缝发育方向为北东向,平桥背斜东翼裂缝较核部发育,易形成网状缝,与实钻井吻合度高,裂缝预测技术能够指导该区的勘探开发。

本文引用格式

孙小琴 . 基于井震结合的南川地区页岩气储层叠后裂缝预测技术[J]. 油气藏评价与开发, 2022 , 12(3) : 462 -467 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.03.008

Abstract

Natural fractures are well developed in shale gas reservoirs, which have great influence on reservoir reconstruction and later fracturing effect. Therefore, the fracture prediction is carried out by ant tracking technology based on the combination of logging and seismic. Firstly, the curves for the fracture development density of the wells are obtained by the calculation of the natural fractures by well logging. Then, by the comparison of various simulation methods, the Gaussian random method is selected, which can reflect the heterogeneity of fracture development in shale reservoir and establish the natural fracture model between wells. Finally, the Co-Kriging interpolation method is used to reflect the properties of inter-well fracture development, and ant attributes are input for the quality control in order to establish the prediction model of natural fractures in Nanchuan area. According to the prediction results, the fractures in Nanchuan area develop along the NE direction. The fractures in the east wing of Pingqiao anticline are more developed than those in the core, and the fracture network are easy to form. The prediction results are highly consistent with the actual drilling wells. This fracture prediction technology can guide the exploration and development of this area.

参考文献

[1] 龙鹏宇, 张金川, 唐玄, 等. 泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J]. 天然气地球科学, 2011, 22(3):525-532.
[1] LONG Pengyu, ZHANG Jinchuan, TANG Xuan, et al. Feature of muddy shale fissure and its effect for shale gas exploration and development[J]. Natural Gas Geoscience, 2011, 22(3): 525-532.
[2] 张海涛, 张颖, 何希鹏, 等. 渝东南武隆地区构造作用对页岩气形成与保存的影响[J]. 中国石油勘探, 2018, 23(5):47-56.
[2] ZHANG Haitao, ZHANG Ying, HE Xipeng, et al. The effect of tectonism on shale gas formation and preservation in Wulong area, southeastern Chongqing[J]. China Petroleum Exploration, 2018, 23(5): 47-56.
[3] 尹志恒, 狄帮让. 国外应用纵波各向异性技术检测裂缝的研究进展[J]. 科技导报, 2011, 29(30),73-79.
[3] YIN Zhiheng, DI Bangrang. Progress in P-wave anisotropy technology for fracture detection[J]. Science & Technology Review, 2011, 29(30), 73-79.
[4] ZHU Y P, TSVANKIN I. Plane-wave attenuation anisotropy in orthorhombic media[J]. Geophysics, 2007, 72(1): D9-D19.
[5] CHICHININA T, OBOLENTSEVA I, GIK L, et al. Attenuation anisotropy in the linear-slip model: Interpretation of physical modeling data[J]. Geophysics, 2009, 74(5): WB165-WB176.
[6] 徐丽萍. 多属性融合技术在塔中碳酸盐岩缝洞储层预测中的应用[J]. 工程地球物理学报, 2010, 7(1),49-22.
[6] XU Liping. The application of multi-attribute fusion technology to the reservoir prediction of carbonate fracture and cavity in Tazhong Area[J]. Chinese Journal of Engineering Geophysics, 2010, 7(1), 49-22.
[7] 戴黎明, 李三忠. 亚洲大陆主要活动块体的现今构造应力数值模拟[J]. 吉林大学学报, 2013, 43(2),469-483.
[7] DAI Liming, LI Sanzhong. Numerical modeling of present-day structural stress of major active blocks in the Asian continent[J]. Journal of Jilin university, 2013, 43(2): 469-483.
[8] BUCHER K, STOBER I. Interaction of mantle rocks with crustal fluids, sagvandites of the scandinavian caledonides[J]. Journal of Earth Science, 2019, 30(6): 1084-1094.
[9] 冷玥, 赵迪斐. 页岩气储层测井评价技术研究与应用现状[J]. 非常规油气, 2019, 6(6):117-123.
[9] LENG Yue, ZHAO Difei. The application status of shale gas reservoir logging evaluation[J]. Unconventional Oil & Gas, 2019, 6(6): 117-123.
[10] 李彦华. 基于多尺度相干裂缝预测技术在文古4断块区的应用[J]. 石化技术: 2018, 25(8):325-326.
[10] LI Yanhua. Application of multi-scale coherent fracture prediction technology in Wengu 4 Fault Block[J]. Petrochemical Industry Technology, 2018, 25(8): 325-326.
[11] 马珊珊. 基于地震数据曲率几何属性的裂缝预测[D]. 北京: 中国地质大学(北京), 2018.
[11] MA Shanshan. Fracture prediction based on curvature geometry attribute of seismic data[D]. Beijing: China University of Geosciences(Beijing), 2018.
[12] 于丹平. 井震结合潜山储层裂缝预测方法研究及应用[D]. 成都: 成都理工大学, 2016.
[12] YU Danping. The research and application of buried hill’s fracture prediction with combining logging and seismic data[D]. Chengdu: Chengdu University of Technology, 2016.
[13] 倪楷, 王明筏, 李响. 四川盆地东南缘页岩气富集模式——以丁山地区上奥陶统五峰组—下志留统龙马溪组页岩为例[J]. 石油实验地质, 2021, 43(4):580-588.
[13] NI Kai, WANG Mingfa, LI Xiang. Enrichment model of shale gas in southeastern Sichuan Basin: A case study of Upper Ordovician Wufeng and Lower Silurian Longmaxi formations in Dingshan area[J]. Petroleum Geology & Experiment, 2021, 43(4): 580-588.
[14] 柳筠, 张梦吟. 页岩气田储层含气性测井评价——以四川盆地涪陵页岩气田J区块为例[J]. 石油实验地质, 2021, 43(1):128-135.
[14] LIU Yun, ZHANG Mengyin. Gas-bearing property evaluation by petrophysical logging in shale gas reservoirs: A case study in J area of Fuling shale gas field,Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(1): 128-135.
[15] 许露露, 张焱林. 鄂西地区黄陵背斜周缘五峰组—龙马溪组页岩气储层及含气性特征[J]. 特种油气藏, 2019, 26(5):26-32.
[15] XU Lulu, ZHANG Yanlin. Shale gas reservoir and gas-bearing properties of Wufeng-Longmaxi Formations in the periphery of Huangling anticline of western Hubei Province[J]. Special Oil & Gas Reservoirs, 2019, 26(5): 26-32.
[16] 何希鹏. 四川盆地东部页岩气甜点评价体系与富集高产影响因素[J]. 天然气工业, 2021, 41(1):59-71.
[16] HE Xipeng. Evaluation system of shale gas sweet spot and influencing factors of enrichment and high yield in eastern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 59-71.
[17] 代磊, 邱庆伦. 高精度三维地震技术在中牟区块页岩气勘探中的应用[J]. 石油地质与工程, 2020, 34(2):44-53.
[17] DAI Lei, QIU Qinglun. Application of 3D high-precision seismic technology of shale gas exploration in Zhongmu block[J]. Petroleum Geology and Engineering, 2020, 34(2): 44-53.
[18] 张淑娟, 王延斌, 梁星如, 等. 蚂蚁追踪技术在潜山油藏裂缝预测中的应用[J]. 断块油气田, 2011, 18(1):51-54.
[18] ZHANG Shujuan, WANG Yanbin, LIANG Xingru, et al. Application of ant tracking technology in fracture prediction of carbonate buried-hill reservoir[J]. Fault-Block Oil & Gas Field, 2011, 18(1): 51-54.
[19] 程超, 周大勇, 翟卫红, 等. 蚂蚁追踪技术在任丘潜山油藏的应用[J]. 西南石油大学报, 2010, 32(2):48-52.
[19] CHENG Chao, ZHOU Dayong, ZHAI Weihong, et al. Application of ant tracking technology in Renqiu buried hill reservoir[J]. Journal of Southwest Petroleum University, 2010, 32(2): 48-52.
[20] 方栋梁, 孟志勇. 页岩气富集高产主控因素分析——以四川盆地涪陵地区五峰组—龙马溪组一段页岩为例[J]. 石油实验地质, 2020, 42(1):37-41.
[20] FANG Dongliang, MENG Zhiyong. Main controlling factors of shale gas enrichment and high yield: a case study of Wufeng-Longmaxi formations in Fuling area, Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 37-41.
[21] 张继标, 戴俊生, 冯建伟, 等. 蚂蚁追踪技术在大程庄地区断裂自动解释中的应用[J]. 石油天然气学报, 2012, 34(5),53-57.
[21] ZHANG Jibiao, DAI Junsheng, FENG Jianwei, et al. Application of ant tracking technology in automatic fault interpretation in Dachengzhuang area[J]. Journal of Oil and Gas Technology, 2012, 34(5): 53-57.
[22] 郭彤楼, 蒋恕, 张培先, 等. 四川盆地外围常压页岩气勘探开发进展与攻关方向[J]. 石油实验地质, 2020, 42(5):837-845.
[22] GUO Tonglou, JIANG Shu, ZHANG Peixian, et al. Progress and direction of exploration and development of normally-pressured shale gas from the periphery of Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(5): 837-845.
[23] 张亮, 施里宇, 梁卫卫. R/S分析方法在储层裂缝预测中的应用——以定边东仁沟长73储层为例[J]. 非常规油气, 2020, 7(4):91-96.
[23] ZHANG Liang, SHI Liyu, LIANG Weiwei. Application of R/S analysis method in reservoir fracture prediction—A case study of Chang-73 reservoir in Dingbian Dongrengou[J]. Unconventional Oil & Gas, 2020, 7(4): 91-96.
[24] 张占女, 陈建波, 吕坐彬, 等. 等效裂缝密度在锦州南变质岩潜山裂缝定量表征中的应用[J]. 重庆科技学院学报, 2014, 16(1):13-16.
[24] ZHANG Zhannv, CHEN Jianbo, LYU Zuobin, et al. Application of equivalent fracture density in the process of quantitative characterization of fractures in Jinzhounan metamorphic buried-hill[J]. Journal of Chongqing Institute of Science and Technology, 2014, 16(1): 13-16.
[25] 陆红梅, 张仲培, 王琳霖, 等. 鄂尔多斯盆地南部上古生界致密碎屑岩储层预测——以镇泾地区为例[J]. 石油实验地质, 2021, 43(3):443-451.
[25] LU Hongmei, ZHANG Zhongpei, WANG Linlin, et al. Prediction of tight clastic reservoirs of Upper Paleozoic in southern Ordos Basin: a case study of Zhenjing district[J]. Petroleum Geology & Experiment, 2021, 43(3): 443-451.
[26] 金智荣, 孙悦铭, 包敏新, 等. 基于真三轴压裂物理模拟系统的暂堵压裂裂缝扩展规律试验研究[J]. 非常规油气, 2021, 8(6):98-105.
[26] JIN Zhirong, SUN Yueming, BAO Minxin, et al. Experimental study on crack propagation law of temporary plugging fracturing based on true triaxial fracturing physical simulation system[J]. Unconventional Oil & Gas, 2021, 8(6): 98-105.
文章导航

/