油气藏评价与开发 >
2022 , Vol. 12 >Issue 3: 468 - 476
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2022.03.009
松辽盆地沙河子组页岩孔隙结构表征——基于低场核磁共振技术
收稿日期: 2020-11-03
网络出版日期: 2022-06-24
基金资助
国家自然科学基金企业创新发展联合项目“深层页岩有效储层形成保存机理及定量表征研究”(U19B6003-03-02);国家自然科学基金项目“复杂构造—成岩背景下海相页岩有机孔隙演化与晚期差异保存研究”(41972164);中国石化科技部项目“页岩孔隙精细表征及流体动态监测技术研究”(P20059-8)
Pore structure characterization of Shahezi Formation shale in Songliao Basin: Based on low-field nuclear magnetic resonance technology
Received date: 2020-11-03
Online published: 2022-06-24
为了表征松辽盆地沙河子组页岩微观孔隙结构,选取沙河子组9个页岩样品开展了饱和与干燥状态下的核磁共振T2测试,同步进行了岩石物性测试和场发射扫描电镜观察,系统分析了核磁共振T2弛豫特征,孔隙类型与分布特征,对比了核磁孔隙度与气测法孔隙度的差异。结果表明:沙河子组页岩样品的核磁共振T2谱以单峰型为主,弛豫时间较短,孔隙直径主要分布在10~1 000 nm;孔隙类型以纳米级无机孔为主,有机孔和微裂缝相对不发育;扣除基底信号后计算的核磁共振孔隙度分布在0.68 %~3.66 %,与He(氦)孔隙度具有较好的匹配关系;孔隙度较小的样品更容易受岩石基质背景信号影响而造成测试结果的相对误差。总体认为,核磁共振技术能够准确分析低孔、低渗页岩样品的孔隙度和孔径分布,但需要注意页岩中有机质和黏土矿物束缚水产生的核磁信号干扰。
李楚雄 , 申宝剑 , 卢龙飞 , 蒋启贵 , 潘安阳 , 陶金雨 , 丁江辉 . 松辽盆地沙河子组页岩孔隙结构表征——基于低场核磁共振技术[J]. 油气藏评价与开发, 2022 , 12(3) : 468 -476 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.03.009
In order to characterize the micro pore structure of Shahezi Formation shale in Songliao Basin, nine shale samples from the lower part of the Shahezi Formation in the Songliao Basin were selected to carry out NMR T2 tests in saturated and dry conditions, and simultaneous petrophysical testing with field emission scanning electron microscope observation. The T2 relaxation characteristics, pore types and distribution characteristics were systematically analyzed. And the difference of porosity measured by the NMR method and the gas method was compared. The results show that the NMR T2 spectrum of the shale samples from the Shahezi Formation is dominated by a single peak type with shorter relaxation time, and the pore diameter is mainly distributed in the range of 10~1 000 nm. The pore types are mainly nano-scale inorganic pores, and the organic pores and microfracture generally underdeveloped. The NMR porosity calculated after deducting the base signal is 0.68 %~3.66 %, which has a good matching relationship with Helium porosity. The samples with smaller porosity are more likely to be affected by the background signal of rock matrix, resulting in the relative error of test results. In generally, the nuclear magnetic resonance technology can accurately analyze the porosity and pore size distribution of low porosity and low permeability shale samples, but attention should be paid to the NMR signal interference caused by organic matter and clay mineral bound water.
Key words: shale; nuclear magnetic resonance; porosity; pore size distribution; pore type
[1] | 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6):641-653. |
[1] | ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. |
[2] | 郭旭升, 胡东风, 文治东, 等. 四川盆地及周缘下古生界海相页岩气富集高产主控因素——以焦石坝地区五峰组—龙马溪组为例[J]. 中国地质, 2014, 41(3):893-901. |
[2] | GUO Xusheng, HU Dongfeng, WEN Zhidong, et al. Major factors controlling the accumulation and high productivity in marine shale gas in the Lower Paleozoic of Sichuan Basin and its periphery: A case study of the Wufeng-Longmaxi Formation of Jiaoshiba area[J]. Geology in China, 2014, 41(3): 893-901. |
[3] | 张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004, 24(7):15-18. |
[3] | ZHANG Jinchuan, JIN Zhiyun, YUAN Mingsheng. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 2004, 24(7): 15-18. |
[4] | LIU Z S, LIU D M, CAI Y D, et al. Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review[J]. International Journal of Coal Geology, 2020, 218: 103261. |
[5] | 姚艳斌, 刘大锰. 基于核磁共振弛豫谱技术的页岩储层物性与流体特征研究[J]. 煤炭学报, 2018, 43(1):181-189. |
[5] | YAO Yanbin, LIU Dameng. Petrophysical properties and fluids transportation in gas shale: A NMR relaxation spectrum analysis method[J]. Journal of China Coal Society, 2018, 43(1): 181-189. |
[6] | 王琨, 周航宇, 赖杰, 等. 核磁共振技术在岩石物理与孔隙结构表征中的应用[J]. 仪器仪表学报, 2020, 41(2):101-114. |
[6] | WANG Kun, ZHOU Hangyu, LAI Jie, et al. Application of NMR technology in characterization of petrophysics and pore structure[J]. Chinese Journal of Scientific Instrument, 2020, 41(2): 101-114. |
[7] | 焦堃, 姚素平, 吴浩, 等. 页岩气储层孔隙系统表征方法研究进展[J]. 高校地质学报, 2014, 20(1):151-161. |
[7] | JIAO Kun, YAO Suping, WU Hao, et al. Advances in characterization of pore system of gas shales[J]. Geological Journal of China Universities, 2014, 20(1): 151-161. |
[8] | YAO Y B, LIU D M. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals[J]. Fuel, 2012, 95(1): 152-158. |
[9] | 张琴, 刘畅, 梅啸寒, 等. 页岩气储层微观储集空间研究现状及展望[J]. 石油与天然气地质, 2015, 36(4):666-674. |
[9] | ZHANG Qin, LIU Chang, MEI Xiaohan, et al. Status and prospect of research on microscopic shale gas reservoir space[J]. Oil & Gas Geology, 2015, 36(4): 666-674. |
[10] | LI A, DING W L, WANG R Y, et al. Petrophysical characterization of shale reservoir based on nuclear magnetic resonance (NMR) experiment: A case study of Lower Cambrian Qiongzhusi Formation in eastern Yunnan Province, South China[J]. Journal of Natural Gas Science & Engineering, 2016, 37: 29-38. |
[11] | STRALEY C, ROSSINI D, VINEGAR H, et al. Core analysis by low-field NMR[J]. Log Analyst, 1997, 38(2): 84-93. |
[12] | 白松涛, 程道解, 万金彬, 等. 砂岩岩石核磁共振T2谱定量表征[J]. 石油学报, 2016, 37(3):382-391. |
[12] | BAI Songtao, CHENG Daojie, WAN Jinbin, et al. Quantitative characterization of sandstone NMR T2 spectrum[J]. Acta Petrolei Sinica, 2016, 37(3): 382-391. |
[13] | 谭茂金, 赵文杰. 用核磁共振测井资料评价碳酸盐岩等复杂岩性储集层[J]. 地球物理学进展, 2006, 21(2):489-493. |
[13] | TAN Maojin, ZHAO Wenjie. Description of carbonate reservoirs with NMR log analysis method[J]. Progress in Geophysics, 2006, 21(2): 489-493. |
[14] | YAO Y, LIU D, CHE Y, et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance(NMR)[J]. Fuel, 2010, 89(7): 1371-1380. |
[15] | 薛晓辉, 叶建国. 核磁共振技术在煤层气勘探中的应用[J]. 油气藏评价与开发, 2013, 3(1):72-74. |
[15] | XUE Xiaohui, YE Jianguo. Application of NMR techniques in CBM exploration[J]. Reservoir Evaluation and Development, 2013, 3(1): 72-74. |
[16] | 周尚文, 刘洪林, 闫刚, 等. 中国南方海相页岩储层可动流体及T2截止值核磁共振研究[J]. 石油与天然气地质, 2016, 37(4):612-616. |
[16] | ZHOU Shangwen, LIU Honglin, YAN Gang, et al. NMR research of movable fluid and T2 cutoff of marine shale in South China[J]. Oil & Gas Geology, 2016, 37(4): 612-616. |
[17] | 蒋裕强, 刘雄伟, 付永红, 等. 渝西地区海相页岩储层孔隙有效性评价[J]. 石油学报, 2019, 40(10):1233-1243. |
[17] | JIANG Yuqiang, LIU Xiongwei, FU Yonghong, et al. Evaluation of effective porosity in marine shale reservoir, western Chongqing[J]. Acta Petrolei Sinica, 2019, 40(10): 1233-1243. |
[18] | 任延广, 朱德丰, 万传彪, 等. 松辽盆地北部深层地质特征与天然气勘探方向[J]. 中国石油勘探, 2004, 9(4):12-18. |
[18] | REN Yanguang, ZHU Defeng, WAN Chuanbiao, et al. Deep geological characteristics and natural gas exploration direction in northern Songliao Basin[J]. China Petroleum Exploration, 2004, 9(4): 12-18. |
[19] | 李楚雄, 申宝剑, 潘安阳, 等. 波罗的海盆地上奥陶统页岩孔隙演化的热压模拟实验[J]. 石油实验地质, 2020, 42(3):434-442. |
[19] | LI Chuxiong, SHEN Baojian, PAN Anyang, et al. Thermal-pressure simulation experiment of pore evolution of Upper Ordovician shale in Baltic Basin[J]. Petroleum Geology & Experiment, 2020, 42(3): 434-442. |
[20] | 任晓娟. 低渗砂岩储层孔隙结构与流体微观渗流特征研究[D]. 西安: 西北大学, 2006. |
[20] | REN Xiaojuan. Pore structure of low permeability sand rock and fluid flowing characteristics[D]. Xi'an: Northwest University, 2006. |
[21] | 范宜仁, 刘建宇, 葛新民, 等. 基于核磁共振双截止值的致密砂岩渗透率评价新方法[J]. 地球物理学报, 2018, 61(4)1628-1638. |
[21] | FAN Yiren, LIU Jianyu, GE Xinmin, et al. Permeability evaluation of tight sandstone based on dual T2 cutoff values measured by NMR[J]. Chinese Journal of geophysics, 2018, 61(4): 1628-1638. |
[22] | 梁志凯, 李卓, 姜振学, 等. 基于NMR和SEM技术研究陆相页岩孔隙结构与分形维数特征——以松辽盆地长岭断陷沙河子组页岩为例[J]. 地球科学与环境学报, 2020, 42(3):313-328. |
[22] | LIANG Zhikai, LI Zhuo, JIANG Zhenxue, et al. Characteristics of pore structure and fractal dimension in continental shale based on NMR experiment and SEM image analyses: A case study of Shahezi Formation Shale in Changling Fault Depression of Songliao Basin, China[J]. Journal of Earth Sciences and Environment, 2020, 42(3): 313-328. |
[23] | 王赞惟. 鄂尔多斯盆地东缘临兴地区盒8段储层微观孔隙结构及渗流特征[J]. 非常规油气, 2020, 7(1):59-64. |
[23] | WANG Zanwei. Microscopic Pore Structure and the Seepage Characteristics in Tight Sandstone Reservoir of the 8th Member of Lower Shihezi Formation in Linxing Area of East Ordos Basin[J]. Unconventional Oil & Gas, 2020, 7(1): 59-64. |
[24] | COATES G R, XIAO L Z, PRAMMER M G. NMR logging principles and applications[M]. Houston: Gulf Publishing Company, 1999. |
[25] | LIU Y, YAO Y B, LIU D M, et al. Shale pore size classification: An NMR fluid typing method[J]. Marine and Petroleum Geology, 2018: 591-601. |
[26] | KHATIBI S, OSTADHASSAN M, XIE Z H, et al. NMR relaxometry a new approach to detect geochemical properties of organic matter in tight shales[J]. Fuel, 2019, 235: 167-177. |
[27] | SONDERGELD C H, AMBROSE R J, RAI C S, et al. Microstructural studies of gas shales[C]// Paper SPE-131771-MS presented at the SPE Unconventional Gas Conference, Pittsburgh, Pennsylvania, USA, February 2010. |
[28] | CURTIS J B. Fractured shale-gas system[J]. AAPG Bulletin, 2002, 86(11): 1921-1938. |
[29] | 焦淑静, 张慧, 薛东川, 等. 泥页岩有机显微组分的扫描电镜形貌特征及识别方法[J]. 电子显微学报, 2018, 37(2):137-144. |
[29] | JIAO Shujing, ZHANG Hui, XUE Dongchuan, et al. Morphological structure and identify method of organic macerals of shale with SEM[J]. Journal of Chinese Electron Microscopy Society, 2018, 37(2): 137-144. |
[30] | LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96: 1071-1098. |
[31] | 汤克轩, 李俊丽, 李振宇, 等. 顺磁性物质对冻土核磁共振信号的影响[J]. 物探与化探, 2017, 41(6):1268-1274. |
[31] | TANG Kexuan, LI Junli, LI Zhenyu, et al. A study of the influence of paramagnetic material on the signal of NMR[J]. Geophysical & Geochemical Exploration, 2017, 41(6): 1268-1274. |
/
〈 | 〉 |