页岩气开发

川南自贡区块页岩储层最佳靶体优选

  • 张成林 ,
  • 杨学锋 ,
  • 赵圣贤 ,
  • 张鉴 ,
  • 邓飞涌 ,
  • 何沅翰 ,
  • 张德良 ,
  • 王高翔 ,
  • 钟光海
展开
  • 1. 中国石油西南油气田分公司页岩气研究院,四川 成都 610051
    2. 页岩气评价与开采四川省重点实验室,四川 成都 610213
    3. 中国石油西南油气田分公司蜀南气矿,四川 泸州 646000
张成林(1990—),男,硕士,工程师,主要从事页岩气地质综合研究。地址:四川省成都市建设北路一段83号,邮政编码:610051。E-mail: zhangcl01@petrochina.com.cn

收稿日期: 2021-08-31

  网络出版日期: 2022-06-24

基金资助

中国石油天然气集团公司科技攻关项目“深层页岩气有效开采关键技术攻关与试验—深层页岩气开发优化技术现场试验(任务2)”(2019F-31-02)

Target position optimization for shale reservoirs in Zigong Block of southern Sichuan Basin

  • Chenglin ZHANG ,
  • Xuefeng YANG ,
  • Shengxian ZHAO ,
  • Jian ZHANG ,
  • Feiyong DENG ,
  • Yuanhan HE ,
  • Deliang ZHANG ,
  • Gaoxiang WANG ,
  • Guanghai ZHONG
Expand
  • 1. Shale Gas Institute of PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan 610051, China
    2. Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province, Chengdu, Sichuan 610213, China
    3. Shunan Gas Field of PetroChina Southwest Oil & Gasfield Company, Luzhou, Sichuan 646000, China

Received date: 2021-08-31

  Online published: 2022-06-24

摘要

川南自贡区块构造位置位于四川盆地威远斜坡南翼,为北西—南东向单斜坡。该区目的层上奥陶统五峰组—下志留统龙一1亚段为深水陆棚相富有机质黑色页岩沉积,储层纵向非均质性较强。水平井页岩“甜点段”钻遇程度的不同造成了测试效果的差异。为明确该区页岩最佳靶体纵向分布、指导水平井钻井轨迹跟踪调整,基于地层小层划分,综合运用钻井、录井、测井及分析化验等资料开展储层精细评价,并利用产气剖面资料评价靶体对页岩气水平井产能的影响。研究结果表明:①受沉积和构造作用的双重影响,目的层中龙一11小层下部页岩段为最优的“地质—工程”双“甜点”;②生产测井分析表明,龙一11小层下部具有最高的单位长度产气贡献率,是研究区的最佳靶体;③水平井的龙一11小层下部页岩有效压裂段长是影响自贡区块气井产能的关键因素。该研究成果将自贡区块最佳靶体纵向分布厚度由2~5 m精确到1~2 m,有效支撑了页岩气产能评价工作,为该区块实现页岩气规模效益开发奠定了基础。

本文引用格式

张成林 , 杨学锋 , 赵圣贤 , 张鉴 , 邓飞涌 , 何沅翰 , 张德良 , 王高翔 , 钟光海 . 川南自贡区块页岩储层最佳靶体优选[J]. 油气藏评价与开发, 2022 , 12(3) : 496 -505 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.03.012

Abstract

Zigong Block, which is located in the southern side of Weiyuan Slope in Sichuan Basin, is a monocline in NW-SE direction. O3w-S1l1-1 is the target layer of that block, which develops black shale with rich organic matters in deep-water continental shelf, while the longitudinal heterogeneity of the reservoir is strong. Different penetration degrees in the sweet spot of horizontal shale well lead to different testing results. In order to determine the longitudinal distribution of the optimal shale target and guide the tracking and adjustment of horizontal well drilling trajectory, based on stratigraphic subdivision, fine evaluation of reservoir is carried out by the comprehensive data of drilling, logging, well testing and laboratory analysis. Meanwhile, the gas production profile data are used to evaluate the impact of the target on shale gas productivity of the horizontal wells. The research results show that: ①Under the influence of both sedimentation and tectonics, the lower part of S1l1-1-1 are the optimal “sweet spots” for both geology and engineering among target layers; ②The production well logging data indicate that, the lower part of S1l1-1-1shows highest gas production contribution of per unit length, which is the optimal target position of the research area; ③The effective fracking length of shale reservoir in the lower part of S1l1-1-1 for horizontal well is the key factor for gas well productivity in Zigong Block. Based on the above results, which supports the productivity evaluation of shale gas effectively, and sets the foundation for realizing large-scale and cost-efficient development of shale gas in that block, the longitudinal distribution thickness of the optimal target in Zigong Block is accurate from 2~5 m to 1~2 m.

参考文献

[1] 何骁, 吴建发, 雍锐, 等. 四川盆地长宁—威远区块海相页岩气田成藏条件及勘探开发关键技术[J]. 石油学报, 2021, 42(2):259-272.
[1] HE Xiao, WU Jianfa, YONG Rui, et al. Accumulation conditions and key exploration and development technologies of marine shale gas field in Changning-Weiyuan block, Sichuan Basin[J]. Acta Petrolei Sinica, 2021, 42(2): 259-272.
[2] 郑爱维, 梁榜, 舒志国, 等. 基于大数据 PLS 法的页岩气产能影响因素分析[J]. 天然气地球科学, 2020, 31(4):542-551.
[2] ZHENG Aiwei, LIANG Bang, SHU Zhiguo, et al. Analysis of influencing factors of shale gas productivity based on large data technology: A case of Jiaoshiba block in Fuling Gas Field, Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(4): 542-551.
[3] 杨洪志, 赵圣贤, 刘勇, 等. 泸州区块深层页岩气富集高产主控因素[J]. 天然气工业, 2019, 39(11):55-63.
[3] YANG Hongzhi, ZHAO Shengxian, LIU Yong, et al. Main controlling factors of enrichment and high-yield of deep shale gas in the Luzhou Block, southern Sichuan Basin[J]. Natural Gas Industry, 2019, 39(11): 55-63.
[4] 赵圣贤, 杨跃明, 张鉴, 等. 四川盆地下志留统龙马溪组页岩小层划分与储层精细对比[J]. 天然气地球科学, 2016, 27(3):470-487.
[4] ZHAO Shengxian, YANG Yueming, ZHANG Jian, et al. Micro-layers division and fine reservoirs contrast of Lower Silurian Longmaxi Formation shale, Sichuan Basin, SW China[J]. Natural Gas Geoscience, 2016, 27(3): 470-487.
[5] 谢军, 赵圣贤, 石学文, 等. 四川盆地页岩气水平井高产的地质主控因素[J]. 天然气工业, 2017, 37(7):1-12.
[5] XIE Jun, ZHAO Shengxian, SHI Xuewen, et al. Main geological factors controlling high production of horizontal shale gas wells in the Sichuan Basin[J]. Natural Gas Industry, 2017, 37(7): 1-12.
[6] 沈骋, 赵金洲, 谢军, 等. 海相页岩缝网可压性靶窗空间分布预测——以川南长宁区块为例[J]. 地质力学学报, 2020, 26(6):881-891.
[6] SHEN Cheng, ZHAO Jinzhou, XIE Jun, et al. Target window spatial distribution prediction based on network fracability: A case study of shale gas reservoirs in the Changning Block, southern Sichuan Basin[J]. Journal of Geomechanics, 2020, 26(6): 881-891.
[7] 武恒志, 熊亮, 葛忠伟, 等. 四川盆地威远地区页岩气优质储层精细刻画与靶窗优选[J]. 天然气工业, 2019, 39(3):11-20.
[7] WU Hengzhi, XIONG Liang, GE Zhongwei, et al. Fine characterization and target window optimization of high-quality shale gas reservoirs in the Weiyuan area, Sichuan Basin[J]. Natural Gas Industry, 2019, 39(3): 11-20.
[8] 马新华, 谢军, 雍锐, 等. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J]. 石油勘探与开发, 2020, 47(5):841-855.
[8] MA Xinhua, XIE Jun, YONG Rui, et al. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(5): 841-855.
[9] 马新华, 李熙喆, 梁峰, 等. 威远页岩气田单井产能主控因素与开发优化技术对策[J]. 石油勘探与开发, 2020, 47(3):555-563.
[9] MA Xinhua, LI Xizhe, LIANG Feng, et al. Dominating factors on well productivity and development strategies optimization in Weiyuan shale gas play, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(3): 555-563.
[10] 李继庆, 梁榜, 曾勇, 等. 产气剖面井资料在涪陵焦石坝页岩气田开发的应用[J]. 长江大学学报(自科版), 2017, 14(11):75-81.
[10] LI Jiqing, LIANG Bang, ZENG Yong, et al. The application of gas-production profile logging data in the development of Jiaoshiba shale gas field in Fuling area[J]. Journal of Yangtze University (Natural Science Edition), 2017, 14(11): 75-81.
[11] 王红岩, 郭伟, 梁峰, 等. 川南自 201 井区奥陶系志留系间黑色页岩生物地层[J]. 地层学杂志, 2018, 42(4):455-460.
[11] WANG Hongyan, GUO Wei, LIANG Feng, et al. Biostratigraphy of Ordovician-Silurian black shale at Well ZI 201, South Sichuan[J]. Journal of Stratigraphy, 2018, 42(4): 455-460.
[12] 张成林, 赵圣贤, 张鉴, 等. 川南地区深层页岩气富集条件差异分析与启示[J]. 天然气地球科学, 2021, 32(2):248-261.
[12] ZHANG Chenglin, ZHAO Shengxian, ZHANG Jian, et al. Analysis and enlightenment of the difference of enrichment conditions for deep shale gas in southern Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(2): 248-261.
[13] 焦方正. 页岩气“体积开发”理论认识、核心技术与实践[J]. 天然气工业, 2019, 39(5):1-14.
[13] JIAO Fangzheng. Theoretical insights, core technologies and practices concerning “volume development” of shale gas in China[J]. Natural Gas Industry, 2019, 39(5): 1-14.
[14] 赵金洲, 任岚, 沈骋, 等. 页岩气储层缝网压裂理论与技术研究新进展[J]. 天然气工业, 2018, 38(3): 1-14.
[14] ZHAO Jinzhou, REN Lan, SHEN Cheng, et al. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs[J]. Natural Gas Industry, 2018, 38(3): 1-14.
[15] 何顺, 秦启荣, 范存辉, 等. 川东南丁山地区五峰—龙马溪组页岩储层特征及影响因素[J]. 油气藏评价与开发, 2019, 9(4):61-67.
[15] HE Shun, QIN Qirong, FAN Cunhui, et al. Shale reservoir characteristics and influencing factors of Wufeng-Longmaxi formation in Dingshan area, Southeast Sichuan[J]. Petroleum Reservoir Evaluation and Development, 2019, 9(4): 61-67.
[16] 邱振, 邹才能, 王红岩, 等. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素[J]. 天然气地球科学, 2020, 31(2):163-175.
[16] QIU Zhen, ZOU Caineng, WANG Hongyan, et al. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi formations shale gas in South China[J]. Natural Gas Geoscience, 2020, 31(2): 163-175.
[17] 王淑芳, 邹才能, 董大忠, 等. 四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J]. 北京大学学报(自然科学版), 2014, 50(3): 476-486.
[17] WANG Shufang, ZOU Caineng, DONG Dazhong, et al. Biogenic silica of organic-rich shale in Sichuan Basin and its signifcance for shale gas[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 476-486.
[18] 胡明, 黄文斌, 李加玉. 构造特征对页岩气井产能的影响——以涪陵页岩气田焦石坝区块为例[J]. 天然气工业, 2017, 37(8):31-39.
[18] HU Ming, HUANG Wenbin, LI Jiayu. Effects of structural characteristics on the productivity of shale gas wells: A case study on the Jiaoshiba Block in the Fuling Shale gasfield, Sichuan Basin[J]. Natural Gas Industry, 2017, 37(8): 31-39.
[19] 何治亮, 聂海宽, 张钰莹. 四川盆地及其周缘奥陶系五峰组—志留系龙马溪组页岩气富集主控因素分析[J]. 地学前缘, 2016, 23(2):8-17.
[19] HE Zhiliang, NIE Haikuan, ZHANG Yuying. The main factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its adjacent areas[J]. Earth Science Frontiers, 2016, 23(2): 8-17.
[20] 赵政嘉, 顾玉洁, 才博, 等. 示踪剂在分段体积压裂水平井产能评价中的应用[J]. 石油钻采工艺, 2015, 37(4):92-95.
[20] ZHAO Zhengjia, GU Yujie, CAI Bo, et al. Application of tracer in productivity evaluation for horizontal wells under segmented volume fracturing[J]. Oil Drilling & Production Technology, 2015, 37(4): 92-95.
[21] 刘旭礼. 页岩气水平井钻井的随钻地质导向方法[J]. 天然气工业, 2016, 36(5):69-73.
[21] LIU Xuli. Geosteering technology in the drilling of shale gas horizontal wells[J]. Natural Gas Industry, 2016, 36(5): 69-73.
[22] 石强, 陈鹏, 王秀芹, 等. 页岩气水平井高产层段判识方法及其应用——以四川盆地威远页岩气示范区下志留统龙马溪组为例[J]. 天然气工业, 2017, 37(1):60-65.
[22] SHI Qiang, CHEN Peng, WANG Xiuqin, et al. A method for identifying high-productivity intervals in a horizontal shale gas well and its application: A case study of the Lower Silurian Longmaxi Fm in Weiyuan shale gas demonstration area, Sichuan Basin[J]. Natural Gas Industry, 2017, 37(1): 60-65.
[23] 唐谢, 尹平, 唐家琼, 等. 元素录井应用中的问题及对策[J]. 天然气工业, 2020, 40(4):51-58.
[23] TANG Xie, YIN Ping, TANG Jiaqiong, et al. Problems in the application of element logging and solutions[J]. Natural Gas Industry, 2020, 40(4): 51-58.
[24] 葛忠伟, 欧阳嘉穗, 蔡文轩, 等. 高陡复杂构造带页岩气水平井方位优选———以永川页岩气区块五峰—龙马溪组为例[J]. 非常规油气, 2021, 8(3):111-117.
[24] GE Zhongwei, OUYANG Jiasui, CAI Wenxuan, et al. Orientation optimization of shale gas horizontal wells in high steep complex structural belt—Taking Wufeng—Longmaxi Formation in Yongchuan shale gas block as an example[J]. Unconventional Oil & Gas, 2021, 8(3): 111-117.
[25] 温真桃, 操良涛, 简万洪, 等. 复杂构造区页岩气水平井高钻遇率井轨迹优化技术——以永川南区开发实践为例[J]. 非常规油气, 2022, 9(1):112-118.
[25] WEN Zhentao, CAO Liangtao, JIAN Wanhong, et al. Trajectory optimization technology of shale gas horizontal wells in complicated structure area: A case of the development practice of Yongchuan southern area[J]. Unconventional Oil & Gas, 2022, 9(1): 112-118.
文章导航

/