油气藏评价与开发 >
2022 , Vol. 12 >Issue 3: 506 - 514
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2022.03.013
威荣深层页岩长水平段工程钻探能力延伸极限研究
收稿日期: 2020-10-15
网络出版日期: 2022-06-24
基金资助
中国石化“十条龙”课题“深层页岩气高效钻完井技术”(P1805-2)
Extendability limit of engineering drilling in long horizontal section of Weirong deep shale gas
Received date: 2020-10-15
Online published: 2022-06-24
威荣深层页岩气垂深达3 800 m,地层坍塌压力系数高达1.95以上,区域超长水平井逐年增加,超长水平井成为后期气田稳产的重要开发手段。以旋转导向钻井方式研究为前提,通过水力裸眼评价模型和钻柱应力计算方法对地质参数、轨迹剖面、钻柱力学、水力参数和地面装备进行影响因素综合分析,不同钻机条件下和不同工况下超长水平段的延伸极限不同。剖面类型优选利于井间防碰和管柱安全下入,三维轨迹剖面钻柱力学所受应力强度是二维轨迹剖面的2倍,钻井液密度和黏度都将影响超长水平段的延伸。评价结果表明,在不考虑钻机能力的条件下,理论裸眼水平段极限为5 840 m,而70钻机因钻深能力限制最大水平段延伸为3 500 m,机泵排量越大,钻井液密度越低,延伸能力越长。
朱化蜀 , 王希勇 , 徐晓玲 , 郭治良 , 黄河淳 . 威荣深层页岩长水平段工程钻探能力延伸极限研究[J]. 油气藏评价与开发, 2022 , 12(3) : 506 -514 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.03.013
The vertical depth of Weirong deep shale gas reaches 3 800 m, and the formation collapse pressure coefficient is above 1.95. The ultra-long horizontal wells in the region are increasing year by year, and the ultra-long horizontal wells have become an important development means for stable production in the later stage of the gas field. Based on the research of rotary steerable drilling method, the hydraulic open-hole evaluation model and Landmark software are used to comprehensively analyze the influencing factors of geological parameters, trajectory profile, drill string mechanics, hydraulic parameters and surface equipment. The extension limits of the ultra-long horizontal section were different under different rig conditions and working conditions. The optimized profile type is beneficial to prevent collision between wells and safe running of pipe string. The stress intensity of the drill string in 3D trajectory profile is twice that of 2D trajectory profile, and both the density and viscosity of drilling fluid will affect the extension of ultra-long horizontal section. The evaluation results show that the theoretical limit of open hole horizontal section is 5 840 m without considering the drilling capacity, while the maximum horizontal section extension of 70 drilling rig is 3 500 m due to the drilling depth limit. The larger the pump displacement, the lower the drilling fluid density, and the longer the elongation capacity.
[1] | 柳伟荣, 倪华峰, 王学枫, 等. 长庆油田陇东地区页岩油超长水平段水平井钻井技术[J]. 石油钻探技术, 2020, 48(1):9-14. |
[1] | LIU Weirong, NI Huafeng, WANG Xuefeng, et al. Shale oil horizontal drilling technology with super-long horizontal laterals in the Longdong Region of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 9-14. |
[2] | 孙永兴, 贾利春.国内3 000m长水平段水平井钻井实例与认识[J]. 石油钻采工艺, 2020, 42(4):393-401. |
[2] | SUN Yongxing, JIA Lichun. Cases and understandings on the drilling of horizontal well with horizontal section of 3 000m long in China[J]. Oil Drilling & Production Technology, 2020, 42(4): 393-401. |
[3] | 樊好福, 臧艳彬, 张金成, 等. 深层页岩气钻井技术难点与对策[J]. 钻采工艺, 2019, 42(3):20-23. |
[3] | FAN Haofu, ZANG Yanbin, ZHANG Jincheng, et al. Difficulties and counter measures of deep shale gas drilling technology[J]. Drilling & Production Technology, 2019, 42(3): 20-23. |
[4] | 于洋飞, 杨光, 陈涛, 等. 新疆玛湖区块2 000m 长水平段水平井钻井技术[J]. 断块油气田, 2017, 24(5):727-730. |
[4] | YU Yangfei, YANG Guang, CHEN Tao, et al. Drilling technology of 2 km-long horizontal section in Mahu Block, Xinjiang Oilfield[J]. Fault-Block Oil & Gas Field, 2017, 24(5): 727-730. |
[5] | 杨金华, 郭晓霞. 一趟钻新技术应用与进展[J]. 石油科技论坛, 2017, 36(2):38-40. |
[5] | YANG Jinhua, GUO Xiaoxia. Application of new technology: Single bit-run drilling[J]. Petroleum Science and Technology Forum, 2017, 36(2): 38-40. |
[6] | GAO D L. Modeling & simulation in drilling and completion for oil & gas[J]. Tech Science Press, Duluth, USA, 2012: 231-252. |
[7] | GAO D L, TAN C, TANG H. Limit analysis of extended reach drilling in South China Sea[J]. Petroleum Science, 2009, 6(2): 166-171. |
[8] | LI X, GAO D L. Study on open-hole extended-reach li mit model analysis for horizontal drilling in shales[J]. Journal of Natural Gas Science & Engineering, 2016, 34: 520-533. |
[9] | LI X, GAO D L. A comprehensive prediction model of hydraulic extended-reach li mit considering the allowable range of drilling fluid flow rate in horizontal drilling[J]. Scientific Reports, 2017, 7(1): 3083. |
[10] | 于洋飞, 杨光, 陈涛, 等. 新疆玛湖区块2 000 m 长水平段水平井钻井技术[J]. 断块油气田, 2017, 24(5):727-730. |
[10] | YU Yangfei, YANG Guang, CHEN Tao, et al. Drilling technology of 2 km-long horizontal section in Mahu Block, Xinjiang Oilfield[J]. Fault-Block Oil & Gas Field, 2017, 24(5): 727-730. |
[11] | 王建龙, 冯冠雄, 刘学松. 长宁页岩气超长水平段水平井钻井完井关键技术[J]. 石油钻探技术, 2020, 48(2):1-8. |
[11] | WANG Jianlong, FENG Guanxiong, LIU Xuesong. Key technology for drilling and completion of horizontal wells in Changning shale gas ultra-long horizontal section[J]. Petroleum Drilling Techniques, 2020, 48(2): 1-8. |
[12] | 汪志明, 郭晓乐, 张松杰, 等. 南海流花超大位移井井眼净化技术[J]. 石油钻采工艺, 2006, 28(1):4-8. |
[12] | WANG Zhiming, GUO Xiaole, ZHANG Songjie, et al. Borehole cleaning technology for mega-extended-reach wells at Liuhua Field in South China Sea[J]. Oil Drilling & Production Technology, 2006, 28(1): 4-8. |
[13] | 罗显尧. 孤岛地区水平井摩阻分析与减摩技术研究[D]. 北京: 中国石油大学(北京), 2010. |
[13] | LUO Xianyao. Friction analysis and friction reduction technology of horizontal wells in Gudao area[D]. Beijing:China University of Petroleum(Beijing), 2010. |
[14] | 兰俊. 海陆过渡相煤系页岩气成藏条件及储层特征[J]. 石油地质与工程, 2021, 35(5):27-32. |
[14] | LAN Jun. Reservoir forming conditions and reservoir characteristics of coal measure shale gas in marine continental transitional facies[J]. Petroleum Geology & Engineering, 2021, 35(5): 27-32. |
[15] | 刘娜娜. 南川地区龙马溪组优质页岩段微观孔隙结构特征[J]. 石油地质与工程, 2021, 35(4):21-25. |
[15] | LIU Na’na. Micro pore structure characteristics of high quality shale section of Longmaxi formation in Nanchuan area[J]. Petroleum Geology & Engineering, 2021, 35(4): 21-25. |
[16] | 杨洁, 董波, 郑义, 等. 川西气田二开长裸眼固井质量保障工艺[J]. 石油地质与工程, 2021, 35(6):81-85. |
[16] | YANG Jie, DONG Bo, ZHENG Yi, et al. Cementing quality assurance technology of long open hole in the second spud of western Sichuan gas field[J]. Petroleum Geology & Engineering, 2021, 35(6): 81-85. |
[17] | 张晓明, 耿应春, 赵洪山, 等. “单弯双稳”导向钻具组合受力分析及在胜利油田的应用[J]. 石油地质与工程, 2021, 35(4):110-113. |
[17] | ZHANG Xiaoming, GENG Yingchun, ZHAO Hongshan, et al. Force analysis of “single bend and double stabilizers” steering BHA and its application in Shengli oilfield[J]. Petroleum Geology & Engineering, 2021, 35(4): 110-113. |
[18] | 郭东明. 欠压实理论在随钻地层压力预测中的应用[J]. 石油地质与工程, 2021, 35(3):80-83. |
[18] | GUO Dongming. Application of under compaction theory in formation pressure prediction while drilling[J]. Petroleum Geology & Engineering, 2021, 35(3): 80-83. |
[19] | 石崇东. 鄂尔多斯盆地宁陕区块深井钻井关键技术[J]. 石油地质与工程, 2021, 35(3):89-92. |
[19] | SHI Chongdong. Key drilling techniques for deep exploration wells in Ningshan block of Ordos basin[J]. Petroleum Geology & Engineering, 2021, 35(3): 89-92. |
[20] | 胥豪, 唐洪林, 董广华, 等. 永进油田深层侧钻水平井钻井技术[J]. 石油地质与工程, 2020, 34(6):84-88. |
[20] | XU Hao, TANG Honglin, DONG Guanghua, et al. Deep sidetracking horizontal well drilling technology in Yongjin oilfield[J]. Petroleum Geology & Engineering, 2020, 34(6): 84-88. |
[21] | 中国石油化工股份有限公司科技开发部.钻井队钻井设备配套标准(第5部分: 7000 m钻机): Q/SH 0168.5—2008[S].北京: 中国石化出版社, 2008, 3:1-7. |
[21] | Sinopec Science & Technology R&D Department. Standard for the drilling equipment matching a drilling rig of a drilling crew Part 5:The skid-mounted drilling rig of No.70: Q/SH 0168.5—2008[S]. Beijing: China Petrochemical Press, 2008, 3:1-7. |
/
〈 | 〉 |