页岩气开发

考虑隔层效应的水力裂缝与天然裂缝相交模拟

  • 周鑫 ,
  • 刘向君 ,
  • 丁乙 ,
  • 梁利喜 ,
  • 刘叶轩
展开
  • 1. 油气藏地质及开发工程国家重点实验室,四川 成都 610500
    2. 西南石油大学,四川 成都 610500
周鑫(1997—),男,在读博士研究生,从事岩石力学及井眼轨迹优化方面的研究。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail: 965373272@qq.com

收稿日期: 2021-07-09

  网络出版日期: 2022-06-24

Simulation of intersecting hydraulic fractures with natural fractures considering layer barrier effect

  • Xin ZHOU ,
  • Xiangjun LIU ,
  • Yi DING ,
  • Lixi LIANG ,
  • Yexuan LIU
Expand
  • 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu, Sichuan 610500, China
    2. Southwest Petroleum University, Chengdu, Sichuan 610500, China

Received date: 2021-07-09

  Online published: 2022-06-24

摘要

目前,水力压裂是开采页岩油气的关键性技术。压裂缝扩展过程中会遇天然裂缝,遇天然裂缝后的压裂缝扩展特征对压裂缝网形成有明显影响,从而影响最终压裂改造效果,因此,需要针对压裂缝遇天然裂缝开展研究。基于ABAQUS软件,考虑裂缝扩展形式及张性破坏,模拟在隔层效应下的二维水力裂缝与天然裂缝相交过程,并考虑不同应力差、相交角度、储隔层应力差以及储隔层弹性模量差对水力裂缝行为的影响。模拟结果表明,在隔层效应下,裂缝的破裂程度和开启效果会更好,且随着应力差的增加,天然裂缝的开启效果越差,直至水力裂缝穿过天然裂缝。当相交角度较小时,隔层效应对裂缝扩展路径没有影响,天然裂缝仅开启上部分,裂缝的张开程度更好,随着相交角度的增加,天然裂缝的开启效果更好,当相交角度为90°时,水力裂缝直接穿过天然裂缝。随着储隔层间应力差的增加,相交点处孔隙压力增大,天然裂缝开启的效果越好,当层间应力差超过某一值时,水力裂缝将穿过天然裂缝。储隔层间弹性模量差越大,地层抗扰动性越强,相交点处孔隙压力越大,两者相互作用下决定了裂缝的扩展行为,当层间弹性模量差较小或较大时,天然裂缝的开启效果更好。

本文引用格式

周鑫 , 刘向君 , 丁乙 , 梁利喜 , 刘叶轩 . 考虑隔层效应的水力裂缝与天然裂缝相交模拟[J]. 油气藏评价与开发, 2022 , 12(3) : 515 -525 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.03.014

Abstract

At present, the hydraulic fracturing is a key technology for shale oil and gas exploitation. The natural fractures will be encountered in the process of compression fracture propagation, and the propagation characteristics of compression fractures after the encounter of natural fractures have a significant impact on the formation of compression fracture network, thus affecting the final fracturing effect. Therefore, it is necessary to conduct the researches on the encounter of compression fractures with natural fractures. Based on the ABAQUS software, the intersecting process of two-dimensional hydraulic fracture and natural fracture under the condition of interlayer effect is simulated, by considering the fracture propagation form and tensile failure. Meanwhile, the influences of different stress differences, intersecting angles, stress differences of reservoir isolation and strength differences of reservoir on hydraulic fracture behavior are considered. The simulation results show that the fracture degree and opening effect are better under the interlayer effect, and the opening effect of natural fracture is worse with the increase of stress difference until the hydraulic fracture passes through the natural fracture. When the intersection angle is small, the interlayer effect has no effect on the fracture propagation path, and only the upper part of the natural fracture is opened, but the opening degree of the fracture is better. With the increase of the intersection angle, the opening effect of the natural fracture is better. When the intersection angle is 90°, the hydraulic fracture directly passes through the natural fracture. With the increase of interlayer stress difference, pore pressure at the intersection point increases, and the opening effect of natural fractures is better. When the interlayer stress difference exceeds a certain value, hydraulic fractures will pass through natural fractures. The larger the elastic modulus difference between reservoirs, and the stronger the formation resistance to disturbance, the larger the pore pressure at the intersection point will be, which determines the propagation behavior of fractures. When the elastic modulus difference between reservoirs is small or large, the opening effect of natural fractures is better.

参考文献

[1] 胡素云, 赵文智, 侯连华, 等. 中国陆相页岩油发展潜力与技术对策[J]. 石油勘探与开发, 2020, 47(4):819-828.
[1] HU Suyun, ZHAO Wenzhi, HOU Lianhua, et al. Development potential and technical strategy of continental shale oil in China[J]. Petroleum Exploration and Development, 2020, 47(4): 819-828.
[2] 李国欣, 朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J]. 中国石油勘探, 2020, 25(2):1-13.
[2] LI Guoxin, ZHU Rukai. Progress, challenges and key issues of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2020, 25(2): 1-13.
[3] 王倩楠, 游一, 李茜, 等. 中国页岩油勘探开发前景[J]. 石化技术, 2019, 26(11):224-225.
[3] WANG Qiannan, YOU Yi, LI Qian, et al. Prospects of shale oil exploration and development in China[J]. Petrochemical Industry Technology, 2019, 26(11): 224-225.
[4] 仝少凯, 高德利. 水力压裂基础研究进展及发展建议[J]. 石油钻采工艺, 2019, 41(1):101-115.
[4] TONG Shaokai, GAO Deli. Basic research progress and development suggestions on hydraulic fracturing[J]. Oil Drilling & Production Technology, 2019, 41(1): 101-115.
[5] 张搏, 李晓, 王宇, 等. 油气藏水力压裂计算模拟技术研究现状与展望[J]. 工程地质学报, 2015, 23(2):301-310.
[5] ZHANG Bo, LI Xiao, WANG Yu, et al. Current status and prospect of computer simulation techniques of hydraulic fracturing in oil and gas field[J]. Journal of Engineering Geology, 2015, 23(2): 301-310.
[6] CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938.
[7] MONTGOMERY S L, JARVIE D M, BOWKER K A, et al. Mississippian Barnett Shale, Fort Worth Basin, north-central Texas: Gas-shale play ith multi-trillion cubic foot potential[J]. AAPG Bulletin, 2005, 89(2): 155-175.
[8] BLANTON T L. Propagation of hydraulically and dynamically induced fractures in naturally fractured reservoirs[C]// Paper SPE-15261-MS presented at the SPE Unconventional Gas Technology Symposium, Louisville, Kentucky, May 1986.
[9] WARPINSKI N R, TEUFEL L W. Influence of geologic discontinuities on hydraulic fracture propagation[J]. Journal of Petroleum Technology, 1987, 39(2): 209-220.
[10] RAHMAN M M, AGHIGHI M A, RAHMAN S S, et al. Interaction between induced hydraulic fracture and pre-existing natural fracture in a poro-elastic environment: Effect of pore pressure change and the orientation of natural fracture[C]// Paper SPE-122574-MS presented at the Asia Pacific Oil and Gas Conference & Exhibition, Jakarta, Indonesia, August 2009.
[11] 马耕, 张帆, 刘晓, 等. 天然裂缝对煤岩体水力裂缝扩展影响研究[J]. 河南理工大学学报(自然科学版), 2016, 35(2):178-182.
[11] MA Geng, ZHANG Fan, LIU Xiao, et al. Research on the influence of natural fractures on hydraulic fractures propagation in coal and rock mass[J]. Journal of Henan Polytechnic University(Natural Science), 2016, 35(2): 178-182.
[12] 刘向君, 丁乙, 罗平亚, 等. 天然裂缝对水力裂缝延伸的影响研究[J]. 特种油气藏, 2018, 25(2):148-153.
[12] LIU Xiangjun, DI Yi, LUO Pingya, et al. Influence of natural fracture on hydraulic fracture propagation[J]. Special Oil & Gas Reservoirs, 2018, 25(2): 148-153.
[13] 刘顺, 何衡, 赵倩云, 等. 水力裂缝与天然裂缝交错延伸规律[J]. 石油学报, 2018, 39(3):320-326,334.
[13] LIU Shun, HE Heng, ZHAO Qianyun, et al. Staggered extension laws of hydraulic fracture and natural fracture[J]. Acta Petrolei Sinica, 2018, 39(3): 320-326.
[14] 郭静芸, 王宇. 水力裂缝沟通天然裂缝活化延伸的机理研究[J]. 工程地质学报, 2018, 26(6):1523-1533.
[14] GUO Jingyun, WANG Yu. Mechanism of natural fracture reactivation and propagation by hydraulic fracture[J]. Journal of Enginering Geology, 2018, 26(6): 1523-1533.
[15] 肖阳, 张丽英, 邓虎成, 等. 水力裂缝及天然裂缝相交延伸规律及真三轴物理模拟实验[J]. 石油钻采工艺, 2021, 43(1):83-88.
[15] XIAO Yang, ZHANG Liying, DENG Hucheng, et al. Intersection and propagation laws of hydraulic fractures and natural fractures and true axial physical simulation experiment[J]. Oil Drilling & Production Technology, 2021, 43(1): 83-88.
[16] 周小金, 雍锐, 范宇, 等. 天然裂缝对页岩气水平井压裂的影响及工艺调整[J]. 中国石油勘探, 2020, 25(6):94-104.
[16] ZHOU Xiaojin, YONG Rui, FAN Yu, et al. Influence of natural fractures on fracturing of horizontal shale gas wells and process adjustment[J]. China Petroleum Exploration, 2020, 25(6): 94-104.
[17] 张健, 王金意, 荆铁亚, 等. 天然裂缝角度对水力压裂的影响数值分析[J]. 常州大学学报(自然科学版), 2020, 32(3):34-39.
[17] ZHANG Jian, WANG Jinyi, JING Tieya, et al. Numerical analysis of the influence of natural fracture angle on hydraulic fracturing[J]. Journal of Changzhou University(Natural Science Edition), 2020, 32(3): 34-39.
[18] 沈永星, 冯增朝, 周动, 等. 天然裂缝对页岩储层水力裂缝扩展影响数值模拟研究[J]. 煤炭科学技术, 2021, 49(8):195-202.
[18] SHEN Yongxing, FENG Zengchao, ZHOU Dong, et al. Study on numerical simulation of effect on natural fractures to hydraulic fracture propagation in shale reservoirs[J]. Coal Science and Technology, 2021, 49(8): 195-202.
[19] 魏明强, 段永刚, 李彦波, 等. 存在大尺度天然裂缝的气藏数值试井分析方法[J]. 天然气地球科学, 2014, 25(5):778-782.
[19] WEI Mingqiang, DUAN Yonggang, LI Yanbo, et al. Study on numerical well test method of gas reservoirs with large-scale fracture[J]. Natural Gas Geoscience, 2014, 25(5): 778-782.
[20] 张帆, 马耕, 冯丹. 大尺寸真三轴煤岩水力压裂模拟试验与裂缝扩展分析[J]. 岩土力学, 2019, 40(5):1890-1897.
[20] ZHANG Fan, MA Geng, FENG Dan. Hydraulic fracturing simulation test and fracture propagation analysis of large-scale coal rock under true triaxial conditions[J]. Rock and Soil Mechanics, 2019, 40(5): 1890-1897.
[21] 郭培峰, 周文, 邓虎成, 等. 致密储层压裂真三轴物理模拟实验及裂缝延伸规律[J]. 成都理工大学学报(自然科学版), 2020, 47(1):65-74.
[21] GUO Peifeng, ZHOU Wen, DENG Hucheng, et al. Real triaxial physical simulation experiment of fracturing and the law of fracture extension in tight reservoir[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2020, 47(1): 65-74.
[22] 何强, 李凤霞, 史爱萍, 等. 基于三维CT重构的油页岩复杂水力裂缝网络分形表征[J]. 油气地质与采收率, 2021, 28(5):116-123.
[22] HE Qiang, LI Fengxia, SHI Aiping, et al. Fractal characterization of complex hydraulic fracture networks of oil shale via 3D CT reconstruction[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(5):116-123.
[23] 陈苏然. 水力压裂裂缝扩展影响因素研究[D]. 西安: 西安理工大学, 2018.
[23] CHEN Suran. Study on the influencing factors of crack[D]. Xi'an: Xi’an University of Technology, 2018.
[24] 王璜, 王贵玲, 岳高凡, 等. 天然裂缝影响下的花岗岩水力裂缝扩展数值模拟[J]. 地质学报, 2020, 94(7):2124-2130.
[24] WANG Huang, WANG Guiling, YUE Gaofan, et al. Numerical simulation of granite hydraulic fracture propagation under the influence of natural fractures[J]. Acta Geologica Sinica, 2020, 94(7): 2124-2130.
文章导航

/