油气藏评价与开发 >
2022 , Vol. 12 >Issue 4: 545 - 555
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2022.04.001
延川南深部煤层气高效开发调整对策研究
收稿日期: 2022-02-21
网络出版日期: 2022-09-02
基金资助
中国石化科技部项目“延川南深层煤层气稳产技术研究”(P19019-4);中国石化科技部项目“低压煤系气藏地质工程一体化高效开发技术”(P20074-1)
Adjustment countermeasures for efficient development of deep coalbed methane in southern Yanchuan CBM Field
Received date: 2022-02-21
Online published: 2022-09-02
中国深部煤层气资源丰富,是煤层气下步勘探开发的重要领域,但深部煤层气资源地质条件更加复杂,工程配套难度大,实现高效开发极具挑战性,攻克深部煤层气效益开发的技术瓶颈,对于推动深部煤层气资源高效动用具有重要意义。以延川南深部煤层气开发调整实践为例,系统分析了早期产建过程中面临的五大难题和挑战:①储层非均质性强,富集高产主控因素不明;②立体资源未能有效动用,储量动用程度低;③开发井网部署模式单一,高应力低渗区单井控制面积小;④深层煤层气储层可改造性差,早期常规水力压裂难以实现长距离有效支撑;⑤传统排采制度达产周期长,经济效益差。在此基础上,经过反复探索实践,通过“五个转变”形成了深部煤层气高效开发的新理念及关键技术:①产建模式从整体推进向有利区精准圈定转变;②开发层系从单层向合层开发转变;③井网部署由单一直井向“直井+水平井”复合井网转变;④储层改造从常规压裂向有效支撑压裂转变;⑤排采制度从缓慢长期向优快上产转变。立足于“五个转变”,现场生产实践显示新井产建效益显著提升,直井产量由1 800 m³/d提升至10 000 m³/d,水平井产量由10 000 m³/d提升至20 000~50 000 m³/d,取得了较好的开发效果,延川南煤层气田高效开发调整对策的突破对于深部煤层气效益开发具有重要的示范及带动意义。
姚红生 , 肖翠 , 陈贞龙 , 郭涛 , 李鑫 . 延川南深部煤层气高效开发调整对策研究[J]. 油气藏评价与开发, 2022 , 12(4) : 545 -555 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.04.001
The deep underground place in China is rich in coalbed methane resources, so that it is an important field of further exploration and development of coalbed methane. However, the geological conditions of deep coalbed methane resources are more complex, and it is different to deploy supporting technologies for engineering, so there is great challenge to realize efficient development. Overcoming the technical bottle-neck of efficient development of deep coalbed methane is of great significance to promote the efficient utilization of deep coalbed methane resources. Taking the development practice of deep coalbed methane in southern Yanchuan CBM Field as an example, five challenges faced in the process of early productivity construction are systematically analyzed: ① The reservoir heterogeneity is strong, and the main controlling factors for enrichment and high yield are unknown; ② The vertical resources need to be further evaluated, and the reserve utilization degree is low; ③ The deployment mode of well pattern is single, and the control area of single well in high stress and low permeability area is small; ④ The modification of the deep coalbed methane reservoir is poor, so it is difficult to achieve long-distance effective support by conventional hydraulic fracturing in the early stage; ⑤ The traditional drainage system has a long production cycle which is resulted in poor economic benefits. On this basis, through repeated exploration and practice, a new concept and key technology for efficient development of deep coalbed methane resources have been formed by “five transformations”: ① The overall productivity construction will change to accurate delineation of favorable areas; ② The development layer system changes from single layer to composite layer; ③ The well pattern deployment has converted from single vertical wells to the mixing well pattern of “vertical well + horizontal well”; ④ Reservoir reconstruction has changed from conventional fracturing to effective support fracturing; ⑤ The drainage system has changed from “slow and long-term” to “efficient increase of production”. Based on the “five transformations”, the production and construction benefits of new wells have been significantly improved, the daily output of vertical wells has increased from 1 800 m³/d to 10 000 m³/d, and that of horizontal wells increased from 10 000 m³/d to 20 000~50 000 m³/d. Good development results have been achieved, and the breakthrough of adjustment countermeasures for efficient development of southern Yanchuan CBM Field has important demonstration and driving significance for the benefit development of deep coalbed methane.
[1] | 庚勐, 陈浩, 陈艳鹏, 等. 第4轮全国煤层气资源评价方法及结果[J]. 煤炭科学技术, 2018, 46(6):64-68. |
[1] | GENG Meng, CHEN Hao, CHEN Yanpeng, et al. Methods and results of the fourth round national CBM resource evaluation[J]. Coal Science and Technology, 2018, 46(6): 64-68. |
[2] | 秦勇, 申建. 论深部煤层气基本地质问题[J]. 石油学报, 2016, 37(1):125-136. |
[2] | QIN Yong, SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica, 2016, 37(1): 125-136. |
[3] | 李松, 汤达祯, 许浩, 等. 深部煤层气储层地质研究进展[J]. 地学前缘, 2016, 23(3):10-16. |
[3] | LI Song, TANG Dazhen, XU Hao, et al. Progress in geological researches on the deep coalbed methane reservoirs[J]. Earth Science Frontiers, 2016, 23(3): 10-16. |
[4] | 秦勇, 申建, 王宝文, 等. 深部煤层气成藏效应及其耦合关系[J]. 石油学报, 2012, 33(1):48-54. |
[4] | QIN Yong, SHEN Jian, WANG Baowen, et al. Accumulation effects and coupling relationship of deep coalbed methane[J]. Acta Petrolei Sinica, 2012, 33(1): 48-54. |
[5] | 申建. 论深部煤层气成藏效应[J]. 煤炭学报, 2011, 36(9):1599-1600. |
[5] | SHEN Jian. CBM-reservoiring effect in deep strata[J]. Journal of China Coal Society, 2011, 36(9): 1599-1600. |
[6] | 高玉巧, 李鑫, 何希鹏, 等. 延川南深部煤层气高产主控地质因素研究[J]. 煤田地质与勘探, 2021, 49(2):21-27. |
[6] | GAO Yuqiao, LI Xin, HE Xipeng, et al. Study on the main controlling geological factors of high yield deep CBM in Southern Yanchuan Block[J]. Coal Geology & Exploration, 2021, 49(2): 21-27. |
[7] | 申鹏磊, 吕帅锋, 李贵山, 等. 深部煤层气水平井水力压裂技术——以沁水盆地长治北地区为例[J]. 煤炭学报, 2021, 46(8):2488-2500. |
[7] | SHEN Penglei, LYU Shuaifeng, LI Guishan, et al. Hydraulic fracturing technology for deep coalbed methane horizontal wells: A case study of North Changzhi area in Qinshui Basin[J]. Journal of China Coal Society, 2021, 46(8): 2488-2500. |
[8] | 卢义玉, 李瑞, 鲜学福, 等. 地面直井+水力割缝卸压方法高效开发深部煤层气探讨[J]. 煤炭学报, 2021, 46(3):876-884. |
[8] | LU Yiyu, LI Rui, XIAN Xuefu, et al. Discussion on the efficient exploitation method of deep coalbed methane with pressure relief by ground directional well+hydraulic slotting[J]. Journal of China Coal Society, 2021, 46(3): 876-884. |
[9] | 陈贞龙, 郭涛, 李鑫, 等. 延川南煤层气田深部煤层气成藏规律与开发技术[J]. 煤炭科学技术, 2019, 47(9):112-118. |
[9] | CHEN Zhenlong, GUO Tao, LI Xin, et al. Enrichment law and development technology of deep coalbed methane in South Yanchuan Coalbed Methane Field[J]. Coal Science and Technology, 2019, 47(9): 112-118. |
[10] | 聂志宏, 巢海燕, 刘莹, 等. 鄂尔多斯盆地东缘深部煤层气生产特征及开发对策——以大宁—吉县区块为例[J]. 煤炭学报, 2018, 43(6):1738-1746. |
[10] | NIE Zhihong, CHAO Haiyan, LIU Ying, et al. Development strategy and production characteristics of deep coalbed methane in the east Ordos Basin: Taking Daning-Jixian block for example[J]. Journal of China Coal Society, 2018, 43(6): 1738-1746. |
[11] | 张凯. 临汾区块煤层气地质条件分析及开发对策研究[D]. 成都: 西南石油大学, 2017 . |
[11] | ZHANG Kai. Analysis on geological conditions and development countermeasures of coalbed methane in Linfen block[D]. Chengdu: Southwest Petroleum University, 2017. |
[12] | 肖翠. 现代产量递减分析法在鄂尔多斯盆地延川南煤层气田中的应用[J]. 天然气工业, 2018, 38(S1):102-106. |
[12] | Xiao Cui. Application of modern production decline analysis method in Yanchuan South coalbed CBM Field in Ordos Basin[J]. Natural Gas Industry, 2018, 38(S1): 102-106. |
[13] | 陈贞龙. 延川南深部煤层气田地质单元划分及开发对策[J]. 煤田地质与勘探, 2021, 49(2):13-20. |
[13] | CHEN Zhenlong. Geological unit division and development countermeasures of deep coalbed methane in Southern Yanchuan Block[J]. Coal Geology & Exploration, 2021, 49(2): 13-20. |
[14] | 肖翠, 陈贞龙, 金晓波. 延川南煤层气田煤体结构模式及改造效果分析[J]. 煤炭科学技术, 2021, 49(11):38-46. |
[14] | XIAO Cui, CHEN Zhenlong, JIN Xiaobo. Coal structure model and fracturing effect of Yanchuannan coalbed CBM Field[J]. Coal Science and Technology, 2021, 49(11): 38-46. |
[15] | 胡秋嘉, 李梦溪, 乔茂坡, 等. 沁水盆地南部高阶煤煤层气井压裂效果关键地质因素分析[J]. 煤炭学报, 2017, 42(6):1506-1516. |
[15] | HU Qiujia, LI Mengxi, QIAO Maopo, et al. Analysis of key geologic factors of fracturing effect of CBM wells for high-rank coal in Southern Qinshui Basin[J]. Journal of China Coal Society, 2017, 42(6): 1506-1516. |
[16] | 王保玉. 晋城矿区煤体结构及其对煤层气井产能的影响[D]. 北京: 中国矿业大学(北京), 2015. |
[16] | WANG Baoyu. Coal body structures and its impact on production capacity of coalbed methane wells in Jincheng[D]. Beijing: China University of mining and Technology (Beijing), 2015. |
[17] | 陈贞龙, 王烽, 陈刚. 延川南深部煤层气富集规律及开发特征研究[J]. 煤炭科学技术, 2018, 46(6):80-84. |
[17] | CHEN Zhenlong, WANG Feng, CHEN Gang. Study on enrichment law and development features of deep coalbed methane in South Yanchuan Field[J]. Coal Science and Technology, 2018, 46(6): 80-84. |
[18] | 高玉巧, 郭涛, 何希鹏, 等. 贵州省织金地区煤层气多层合采层位优选[J]. 石油实验地质, 2021, 43(2):227-232. |
[18] | GAO Yuqiao, GUO Tao, HE Xipeng, et al. Optimization of multi-layer commingled coalbed methane production in Zhijin area, Guizhou province[J]. Petroleum Geology & Experiment, 2021, 43(2): 227-232. |
[19] | 闫霞, 徐凤银, 聂志宏, 等. 深部微构造特征及其对煤层气高产“甜点区”的控制——以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报, 2021, 46(8):2426-2439. |
[19] | YAN Xia, XU Fengyin, NIE Zhihong, et al. Microstructure characteristics of Daji area in east Ordos Basin and its control over the high yield dessert of CBM[J]. Journal of China Coal Society, 2021, 46(8): 2426-2439. |
[20] | 孙粉锦, 王勃, 李梦溪, 等. 沁水盆地南部煤层气富集高产主控地质因素[J]. 石油学报, 2014, 35(6):1070-1079. |
[20] | SUN Fenjin, WANG Bo, LI Mengxi, et al. Major geological factors controlling the enrichment and high yield of coalbed methane in the southern Qinshui Basin[J]. Acta Petrolei Sinica, 2014, 35(6): 1070-1079 |
[21] | 张雷, 郝帅, 张伟, 等. 中低煤阶煤层气储量复算及认识——以鄂尔多斯盆地东缘保德煤层气田为例[J]. 石油实验地质, 2020, 42(1):147-155. |
[21] | ZHANG Lei, HAO Shuai, ZHANG Wei, et al. Recalculation and understanding of middle and low rank coalbed methane reserves: a case study of Baode Coalbed Methane Field on the eastern edge of Ordos Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 147-155. |
[22] | 李勇, 汤达祯, 孟尚志, 等. 鄂尔多斯盆地东缘煤储层地应力状态及其对煤层气勘探开发的影响[J]. 矿业科学学报, 2017, 2(5):416-424. |
[22] | LI Yong, TANG Dazhen, MENG Shangzhi, et al. The in-situ stress of coal reservoirs in east margin of Ordos Basin and its influence on coalbed methane development[J]. Journal of Mining Science and Technology, 2017, 2(5): 416- 424. |
[23] | 孟召平, 田永东, 李国富. 沁水盆地南部煤储层渗透性与地应力之间关系和控制机理[J]. 自然科学进展, 2009, 19(10):1142-1148. |
[23] | MENG Zhaoping, TIAN Yongdong, LI Guofu. Relationship and control mechanism between permeability and in-situ stress of coal reservoir in the south of Qinshui Basin[J]. Progress in natural science, 2009, 19(10): 1142-1148. |
[24] | 王振云, 唐书恒, 孙鹏杰, 等. 沁水盆地寿阳区块3号和9号煤层合层排采的可行性研究[J]. 中国煤炭地质, 2013, 25(11):21-26. |
[24] | WANG Zhenyun, TANG Shuheng, SUN Pengjie, et al. Feasibility study of multi-layer drainage for No.3 and 9 coal seams in Shouyang Block, Qinshui Basin[J]. Coal Geology of China, 2013, 25(11): 21-26. |
[25] | 张政. 沁水盆地南部太原组含煤层气系统及其排采优化[D]. 徐州: 中国矿业大学, 2016. |
[25] | ZHANG Zheng. Coalbed methane system and drainage optimization of Taiyuan Formation in southern Qinshui Basin[D]. Xuzhou: China University of mining and technology, 2016. |
[26] | 朱庆忠, 左银卿, 杨延辉. 如何破解我国煤层气开发的技术难题——以沁水盆地南部煤层气藏为例[J]. 天然气工业, 2015, 35(2):106-109. |
[26] | ZHU Qingzhong, ZUO Yinqing, YANG Yanhui. How to solve the technical problems in CBM development: A case study of a CBM gas reservoir in the southern Qinshui Basin[J]. Natural Gas Industry, 2015, 35(2): 106-109. |
[27] | 赵欣, 姜波, 徐强, 等. 煤层气开发井网设计与优化部署[J]. 石油勘探与开发, 2016, 43(1):84-90. |
[27] | ZHAO Xin, JIANG Bo, XU Qiang, et al. Well pattern design and deployment for coalbed methane development[J]. Petroleum Exploration and Development, 2016, 43(1): 84-90. |
[28] | 刘玮. 煤层气直井和水平井混合井网优化设计研究[D]. 北京: 中国石油大学(北京), 2019. |
[28] | LIU Wei. Optimization design of coalbed methane vertical well and horizontal well mixing well pattern[D]. Beijing: China University of Petroleum (Beijing), 2019. |
[29] | 朱宝存, 唐书恒, 张佳赞. 煤岩与顶底板岩石力学性质及对煤储层压裂的影响[J]. 煤炭学报, 2009, 34(6):756-760. |
[29] | ZHU Baocun, TANG Shuheng, ZHANG Jiazan. Mechanics characteristics of coal and its roof and floor rock and the effects of hydraulic fracturing on coal reservoir[J]. Journal of China Coal Society, 2009, 34(6): 756-760. |
/
〈 | 〉 |