油气藏评价与开发 >
2022 , Vol. 12 >Issue 4: 564 - 571
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2022.04.003
压裂过程数据对原始煤储层压力反演方法研究
收稿日期: 2021-12-17
网络出版日期: 2022-09-02
基金资助
山西省科技重大专项“基于气藏工程的煤层气井人工智能排采技术与示范”(20201101002);中国石油大学(北京)优秀青年学者基金“煤层气藏储层物性改造技术及增产机理研究”(2462020QNXZ003)
An inversion method of initial coal reservoir pressure using fracturing process data
Received date: 2021-12-17
Online published: 2022-09-02
原始煤储层压力是煤层气储量和产能评价中一个非常重要的参数,对煤层气开采具有指导作用,准确计算原始煤储层压力具有重大意义。因此,基于渗流力学理论压力势叠加原理,建立了压裂过程中和压裂后关井过程中压力势模型,并分忽略与考虑煤储层压裂过程中和压裂后裂缝网络渗透率变化两种情况,提出了利用水力压裂煤层气井关井阶段井口压力降落数据反演原始煤储层压力的方法,并进行了实例应用。从实例井拟合结果可以看出,忽略与考虑煤储层裂缝网络渗透率变化的原始地层压力方法线性关系都很明显,说明建立的方法有效。从解释精度的角度来看,考虑煤储层压裂后裂缝网络渗透率变化的方法参与拟合的数据点更多,且压裂过程和压裂后煤储层裂缝网络渗透率变化是不争的事实,解释结果更加可靠。如果忽略压后关井期间煤层裂缝网络渗透率的变化过程,评价的裂缝网络稳定的渗透率及原始煤储层压力会偏高。该方法在确定原始煤储层压力的同时,还可以确定煤储层压裂后裂缝网络稳定的渗透率并评价裂缝网络渗透率变化趋势,为煤层气藏类型划分、煤层气储量计算、压裂效果评价和排采制度优化设计提供依据。
石军太 , 李文斌 , 张龙龙 , 季长江 , 李国富 , 张遂安 . 压裂过程数据对原始煤储层压力反演方法研究[J]. 油气藏评价与开发, 2022 , 12(4) : 564 -571 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.04.003
The initial formation pressure of coalbed methane(CBM) reservoir is a key parameter used for the evaluation of CBM reserves and productivity, which plays a guiding role in CBM production. Therefore, it is of great significance to accurately calculate the initial reservoir pressure of CBM reservoir. Based on the pressure potential superposition principle of the seepage mechanics theory, the pressure potential model in the process of fracturing and shut in after fracturing is established, and a method for determining the initial reservoir pressure of CBM reservoir is proposed by using the wellhead pressure drop data in the shut-in stage of hydraulically fractured gas well under two conditions: ignoring or considering the fracture network permeability change in the process of fracturing and shut in after fracturing. And then, a field application is carried out. From the fitting results of the case study, it can be seen that the linear relationships for both methods are obvious, indicating that the established methods are effective. From the perspective of interpretation accuracy, the method of considering the fracture network permeability change after fracturing involves more data points in fitting, and the fracture network permeability change during fracturing and after fracturing is an indisputable fact, so the interpretation result by using the method considering the fracture network permeability change is more reliable. If the change process of fracture network permeability of coal formation during shut in after fracturing is ignored, the interpreted stable permeability of fracture network and initial reservoir pressure will be high. Since this method can not only be used to determine the initial reservoir pressure, but also to determine the stable permeability of fracture network after fracturing and evaluate the change trend of fracture network permeability, it provides a basis for the classification of CBM reservoir types, CBM reserve calculation, fracturing effect evaluation, and optimization design of drainage and production system.
[1] | 陈美英, 刘亢, 宁树正, 等. 中国煤层气资源区划研究[J]. 中国煤炭地质, 2020, 32(11):1-5. |
[1] | CHEN Meiying, LIU Kang, NING Shuzheng, et al. Study on CBM resources zoning in China[J]. Coal Geology of China, 2020, 32(11): 1-5. |
[2] | 曾泉树, 高清春, 汪志明. 煤岩吸附高压甲烷的实验与模型研究[J]. 石油科学通报, 2020, 5(1):78-92. |
[2] | ZENG Quanshu, GAO Qingchun, WANG Zhiming. Experimental and modeling studies on high pressure methane adsorbed on coals[J]. Petroleum Science Bulletin, 2020, 5(1): 78-92. |
[3] | 宋岩, 柳少波, 赵孟军, 等. 煤层气与常规天然气成藏机理的差异性[J]. 天然气工业, 2011, 31(12):47-53. |
[3] | SONG Yan, LIU Shaobo, ZHAO Mengjun, et al. Difference of gas pooling mechanism between coalbed methane gas and conventional natural gas[J]. Natural Gas Industry, 2011, 31(12): 47-53. |
[4] | 李相方, 石军太, 杜希瑶, 等. 煤层气藏开发降压解吸气运移机理[J]. 石油勘探与开发, 2012, 39(2):203-213. |
[4] | LI Xiangfang, SHI Juntai, DU Xiyao, et al. Transport mechanism of desorbed gas in coalbed methane reservoirs[J]. Petroleum Exploration and Development, 2012, 39(2): 203-213. |
[5] | 石军太, 李相方, 徐兵祥, 等. 煤层气解吸扩散渗流模型研究进展[J]. 中国科学:物理学力学天文学, 2013, 43(12):1548-1557. |
[5] | SHI Juntai, LI Xiangfang, XU Bingxiang, et al. Review on desorption-diffusion-flow model of coal-bed methane[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2013, 43(12): 1548-1557. |
[6] | 李勇, 孟尚志, 吴鹏, 等. 煤层气成藏机理及气藏类型划分——以鄂尔多斯盆地东缘为例[J]. 天然气工业, 2017, 37(8):22-30. |
[6] | LI Yong, MENG Shangzhi, WU Peng, et al. Accumulation mechanisms and classifi cation of CBM reservoir types: A case study from the eastern margin of the Ordos Basin[J]. Natural Gas Industry, 2017, 37(8): 22-30. |
[7] | 宋先知, 姚学喆, 李根生, 等. 基于LSTM-BP神经网络的地层孔隙压力计算方法[J]. 石油科学通报, 2022, 7(1):12-23. |
[7] | SONG Xianzhi, YAO Xuezhe, LI Gensheng. A novel method to calculate formation pressure based on the LSTM-BP neural network[J]. Petroleum Science Bulletin, 2022, 7(1): 12-23. |
[8] | 胡素明, 李相方, 胡小虎, 等. 考虑煤层气藏地解压差的物质平衡储量计算方法[J]. 煤田地质与勘探, 2012, 40(1):14-19. |
[8] | HU Suming, LI Xiangfang, HU Xiaohu, et al. Reserves calculation method with a material balance equation considering the difference between initial coal seam pressure and critical desorption pressure[J]. Coal Geology & Exploration, 2012, 40(1): 14-19. |
[9] | 曹毅民, 丁蓉, 赵启阳, 等. 煤层气可采储量计算方法的评价与应用[J]. 天然气工业, 2018, 38(S1):50-56. |
[9] | CAO Yimin, DING Rong, ZHAO Qiyang, et al. Evaluation and application of calculation method of recoverable reserves of coalbed methane[J]. Natural Gas Industry, 2018, 38(S1): 50-56. |
[10] | SHI J T, WU J Y, SUN Z, et al. Methods for simultaneously evaluating reserve and permeability of undersaturated coalbed methane reservoirs using production data during the dewatering stage[J]. Petroleum Science, 2020, 17(4): 1067-1086. |
[11] | 司淑平, 李文峰, 马建民. 煤层气井产能影响因素分析及对策[J]. 断块油气田, 2001, 8(5):50-53. |
[11] | SI Shuping, LI Wenfeng, MA Jianmin, et al. Influence factors of production capacity and strategy on coalbed gas well[J]. Fault-Block Oil & Gas Field, 2001, 8(5): 50-53. |
[12] | 肖宇航, 朱庆忠, 杨延辉, 等. 煤储层能量及其对煤层气开发影响研究—以郑庄区块为例[J]. 煤炭学报, 2021, 46(10):3286-3297. |
[12] | XIAO Yuhang, ZHU Qingzhong, YANG Yanhui, et al. Coal reservoir energy and its impact on CBM exploitation: Illustrated by the case of Zhengzhuang block[J]. Journal of China Coal Society, 2021, 46(10): 3286-3297. |
[13] | 石军太, 吴嘉仪, 房烨欣, 等. 考虑煤粉堵塞影响的煤储层渗透率模型及其应用[J]. 天然气工业, 2020, 40(6):78-89. |
[13] | SHI Juntai, WU Jiayi, FANG Yexin, et al. A new coal reservoir permeability model considering the influence of pulverized coal blockage and its application[J]. Natural Gas Industry, 2020, 40(6): 78-89. |
[14] | 赵兴龙, 常昊. 煤层气井整体压裂及排采技术研究——以延川南煤层气田为例[J]. 中国煤炭地质, 2021, 33(1):31-35. |
[14] | ZHAO Xinglong, CHANG Hao. Study on CBM well integral fracturing and drainage technology: A case study of Yanchuannan CBM Field[J]. Coal Geology of China, 2021, 33(1): 31-35. |
[15] | 姚艳芳, 李新春, 贾江丽, 等. 煤层气井DST与注入/压降测试对比分析[J]. 油气井测试, 2000, 9(1):60-65. |
[15] | YAO Yanfang, LI Xinchun, JIA Jiangli, et al. Comparison and analysis of DST and injection/draw-down test in coal gas wells[J]. Well Testing, 2000, 9(1): 60-65. |
[16] | 方世跃, 许哲, 何建琴, 等. 煤层气井注入/压降试井研究进展[J]. 煤炭科学技术, 2018, 46(9):227-232. |
[16] | FANG Shiyue, XU Zhe, HE Jianqin, et al. Study progress of injection/pressure drop test well for coalbed methane well[J]. Coal Science and Technology, 2018, 46(9): 227-232. |
[17] | 李士才, 邵先杰, 乔雨朋, 等. 韩城矿区煤层气井试井分析[J]. 延安大学学报(自然科学版), 2015, 34(2):31-35. |
[17] | LI Shicai, SHAO Xianjie, QIAO Yupeng, et al. Analysis of CBM well test in Hancheng[J]. Journal of Yan'an University(Natural Science Edition), 2015, 34(2): 31-35. |
[18] | 罗斌. 煤层气注水压降试井工艺发展及存在问题[J]. 内蒙古煤炭经济, 2019,(15):170. |
[18] | LUO Bin. Development and existing problems of water pressure drop test technology for coalbed methane injection[J]. Inner Mongolia Coal Economy, 2019, (15): 170. |
[19] | 陈江萌, 乔亚斌, 贾连超. 求取低渗低压气藏地层压力的一种新方法[J]. 石油化工应用, 2013, 32(1):56-59. |
[19] | CHEN Jiangmeng, QIAO Yabin, JIA Lianchao. A new method to calculate formation pressure in low permeable gas reservoirs[J]. Petrochemical Industry Application, 2013, 32(1): 56-59. |
[20] | 杨玲, 文彩霞, 董悦. 低渗透气藏气井平均地层压力简便计算方法[J]. 西安石油大学学报(自然科学版), 2013, 28(5):80-82. |
[20] | YANG Ling, WEN Caixia, DONG Yue. A simplified calculation method for average formation pressure of gas well in low-permeability gas reservoir[J]. Journal of Xi'an Shiyou University(Natural Science), 2013, 28(5): 80-82. |
[21] | 刘林松, 李闽, 计曙东. 低渗透气藏生产过程中不关井求取原始地层压力[J]. 钻采工艺, 2017, 40(1):54-55. |
[21] | LIU Linsong, LI Min, JI Shudong. A method to calculate original formation pressure of low-permeability gas reservoirs without shut-in[J]. Drilling & Production Technology, 2017, 40(1): 54-55. |
[22] | 张学英, 王钧剑, 王刚, 等. 煤层气藏气体产出路径研究——以沁水盆地南部马必东区块为例[J]. 油气地质与采收率, 2020, 27(2):137-142. |
[22] | ZHANG Xueying, WANG Junjian, WANG Gang, et al. Gas production path of coalbed methane reservoir: A case study of Mabidong Block, southern Qinshui Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(2): 137-142. |
[23] | 秦勇, 袁亮, 胡千庭, 等. 我国煤层气勘探与开发技术现状及发展方向[J]. 煤炭科学技术, 2012, 40(10):1-6. |
[23] | QIN Yong, YUAN Liang, HU Qianting, et al. Status and development orientation of coal bed methane exploration and development technology in China[J]. Coal Science and Technology, 2012, 40(10): 1-6. |
[24] | 张遂安, 张典坤, 彭川, 等. 中国煤层气产业发展障碍及其对策[J]. 天然气工业, 2019, 39(4):118-124. |
[24] | ZHANG Sui'an, ZHANG Diankun, PENG Chuan, et al. Obstacles to the development of CBM industry and countermeasures in China[J]. Natural Gas Industry, 2019, 39(4): 118-124. |
[25] | 张遂安, 刘欣佳, 温庆志, 等. 煤层气增产改造技术发展现状与趋势[J]. 石油学报, 2021, 42(1):105-118. |
[25] | ZHANG Sui'an, LIU Xinjia, Wen Qingzhi, et al. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica, 2021, 42(1): 105-118. |
[26] | 徐凤银, 王勃, 赵欣, 等. “双碳”目标下推进中国煤层气业务高质量发展的思考与建议[J]. 中国石油勘探, 2021, 26(3):9-18. |
[26] | XU Fengyin, WANG Bo, ZHAO Xin, et al. Thoughts and suggestions on promoting high quality development of China's CBM business under the goal of “double carbon”[J]. China Petroleum Exploration, 2021, 26(3): 9-18. |
[27] | LIU Z H, LIU J S, PAN O Z, et al. Evolution and analysis of gas sorption-induced coal fracture strain data[J]. Petroleum Science, 2020, 17(2): 376-392. |
[28] | LI T, WU C F, WANG Z W. The dynamic change of pore structure for low-rank coal under refined upgrading pretreatment temperatures[J]. Petroleum Science, 2021, 18(2): 430-443. |
[29] | 张正朝. 煤层气井压裂效果影响因素分析与技术对策[J]. 中国石油和化工标准与质量, 2018, 38(10):187-188. |
[29] | ZHANG Zhengchao. Analysis on influencing factors of fracturing effect of coalbed gas well and technical countermeasures[J]. China Petroleum and Chemical Standard and Quality, 2018, 38(10): 187-188. |
[30] | HOLDITCH S A, ELY J W, SEMMELBECK M E, et al. Enhanced recovery of coalbed methane through hydraulic fracturing[C]// Paper SPE-18250-MS presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, October 1988. |
[31] | 杨琦. 煤层气压裂新技术研究[J]. 能源与环保, 2017,(1):117-120. |
[31] | YANG Qi. Study on new technology of coal-bed gas fracturing[J]. China Energy and Environmental Protection, 2017, (1): 117-120. |
[32] | 刘乐, 胡千庭, 李全贵, 等. 流量引起的注入压力变化对水力压裂效果的影响研究[J]. 矿业安全与环保, 2020, 47(4):1-5. |
[32] | LIU Le, HU Qianting, LI Quangui, et al. Study on the influence of injection pressure variation caused by flow on hydraulic fracturing effect[J]. Mining Safety & Environmental Protection, 2020, 47(4): 1-5. |
[33] | 徐凤银, 闫霞, 林振盘, 等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探, 2022, 50(3):1-14. |
[33] | XU Fengyin, YAN Xia, LIN Zhenpan, et al. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration, 2022, 50(3): 1-14. |
[34] | 曾泉树, 汪志明. 鄂尔多斯盆地东缘煤岩渗透率的应力和温度敏感特征[J]. 石油科学通报, 2020, 5(4):512-519. |
[34] | ZENG Quanshu, WANG Zhiming. Stress and temperature sensitivity of coal permeability in the Eastern Ordos Basin[J]. Petroleum Science Bulletin, 2020, 5(4): 512-519. |
[35] | 谭鹏, 金衍, 陈刚. 四川盆地不同埋深龙马溪页岩水力裂缝缝高延伸形态及差异分析[J]. 石油科学通报, 2022, 7(1):61-70. |
[35] | TAN Peng, JIN Yan, CHEN Gang. Differences and causes of fracture height geometry for Longmaxi shale with different burial depths in the Sichuan basin[J]. Petroleum Science Bulletin, 2022, 7(1): 61-70. |
[36] | 史璨, 林伯韬. 页岩储层压裂裂缝扩展规律及影响因素研究探讨[J]. 石油科学通报, 2021, 6(1):92-113. |
[36] | SHI Can, LIN Botao. Principles and influencing factors for shale formations[J]. Petroleum Science Bulletin, 2021, 6(1): 92-113. |
[37] | 石军太, 李文斌, 张龙龙, 等. 煤储层原始地层压力的计算方法及装置:CN202110880725.4[P]. 2021-11-05. |
[37] | SHI Juntai, LI Wenbin, ZHANG Longlong, et al. Calculation method and device of original formation pressure of coal reservoir: CN202110880725.4[P]. 2021-11-05. |
[38] | 石军太, 李文斌, 贾焰然, 等. 基于压裂后压力确定煤储层原始地层压力的方法及装置:CN202110880145.5[P]. 2021-09-21. |
[38] | SHI Juntai, LI Wenbin, JIA Yanran, et al. Method and device for determining original formation pressure of coal reservoir based on post fracturing pressure: CN202110880145.5[P]. 2021-09-21. |
[39] | 李晓蓉, 古臣旺, 冯永存, 等. 考虑井筒加载历史的压裂过程中套管剪切变形数值模拟研究[J]. 石油科学通报, 2021, 6(2):245-261. |
[39] | LI Xiaorong, GU Chenwang, FENG Yongcun, et al. Numerical study of shear deformation of casings during hydraulic fracturing considering wellbore loading history[J]. Petroleum Science Bulletin, 2021, 6(2): 245-261. |
[40] | SHI J T, HOU C H, WANG S, et al. The semi-analytical productivity equations for vertically fractured coalbed methane wells considering pressure propagation process, variable mass flow, and fracture conductivity decrease[J]. Journal of Petroleum Science and Engineering, 2019, 178(7): 528-543. |
/
〈 | 〉 |