油气藏评价与开发 >
2022 , Vol. 12 >Issue 4: 572 - 579
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2022.04.004
CH4-煤吸附/解吸过程视电阻率变化的实验研究
收稿日期: 2022-04-12
网络出版日期: 2022-09-02
基金资助
国家自然科学基金“润湿性制约下低阶煤不同煤岩组分甲烷解吸机制”(41902175);陕西省公益性地质调查项目“陕西省永陇—韩城一带深层煤层气资源预测评价”(陕地调院发〔2021〕28号)
Experimental study on variation of apparent resistivity in CH4-coal adsorption/desorption process
Received date: 2022-04-12
Online published: 2022-09-02
为了揭示不同宏观煤岩组分CH4-煤吸附/解吸过程中煤体视电阻率的变化规律,以彬长矿区大佛寺煤矿侏罗系延安组4号煤层为研究对象,通过工业分析及不同煤样(暗煤、镜煤和原煤样)、含水率(空气干燥基样、自然吸水样和通风干燥箱温度为378.15 K的干燥样)视电阻率测试实验,分析了煤体视电阻率、甲烷吸附量和平衡压力之间的关系。研究发现,暗煤的固定碳含量高于镜煤,灰分、水分低于镜煤,暗煤干燥样(通风干燥箱温度为378.15 K)初始视电阻率最大。甲烷的吸附对煤体视电阻率的影响表现为随着甲烷吸附量增加,煤体视电阻率明显降低,升压(吸附)过程,煤体视电阻率与压力、吸附量呈二次函数关系,其主要原因是甲烷吸附放热、煤体膨胀以及水在孔喉内壁的铺展导致视电阻率降低。由于甲烷吸附导致煤基质表面发生气-水置换,游离水使得可溶矿物质溶解,离子浓度提高,煤体导电由电子导电变为离子导电为主辅以电子导电的混合导电,因此升压(吸附)过程,煤体视电阻率降低,但由于可溶矿物质的有限性以及煤的疏水性,使得吸附后期煤体视电阻率趋于稳定。降压(解吸)过程,由于煤基质膨胀后的收缩是不可逆(形变),煤体视电阻率不能恢复到初始值。相较暗煤,镜煤孔隙连通性差,但孔喉曲率较大,此时双电层带电粒子数量多,成堆聚集,最终导致相同条件下镜煤的导电性能好于暗煤,即镜煤的煤体视电阻率小于暗煤的煤体视电阻率。
史利燕 , 李卫波 , 康琴琴 , 李菲 , 齐佳新 . CH4-煤吸附/解吸过程视电阻率变化的实验研究[J]. 油气藏评价与开发, 2022 , 12(4) : 572 -579 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.04.004
In order to reveal the change law of apparent resistivity in the process of CH4-coal adsorption/desorption of different macroscopic coal petrology compositions, the No.4 coal seam of the Jurassic Yan'an Formation in Dafosi coal mine is taken as the experimental object. By the proximate analysis and apparent resistivity measurement experiments of different coal samples (the durain, vitrain and mixed samples) with different water content (air dry basis sample, natural water absorption sample and samples dried at 378.15 K) of coal, the relationship between the apparent resistivity, methane adsorption and pressures is studied. The experimental results found that when compared to the vitrain, the durain has higher fixed carbon content, but lower ash content and moisture. The initial resistivity of the samples dried at 378.15 K of the durain is the largest. The influence of the adsorption of methane on the resistivity of the coal body is manifested in that with the adsorption of methane, the apparent resistivity of coal is significantly reduced. During the pressure increasing process that is the process of adsorption, the coal resistivity has a quadratic function relationship with the pressure and the amount of adsorption. The reason is that methane adsorption heat release, coal body expansion, and the spread of water on the inner wall of the pore throat causes the apparent resistivity to decrease. Due to methane adsorption, gas-water replacement occurs on the surface of the coal matrix, free water dissolves soluble minerals, and the ion concentration increases. In the process of adsorption, the apparent resistivity of coal decreases, but due to the limited soluble minerals and the hydrophobicity of coal, the resistivity of coal tends to be stable in the later stage of adsorption. During the depressurization process, that is the process of desorption, since the shrinkage of the coal matrix after expansion is irreversible (deformation), the apparent resistivity of the coal body cannot be restored to its initial value. Compared to the durain, the pore connectivity of vitrain is poor, but the pore throat curvature is larger, when the number of charged particles in the double electric layer is high and aggregated in piles. This eventually leads to better electrical conductivity of vitrain than durain under the same conditions, i.e., the apparent resistivity of vitrain is smaller than that of durain.
[1] | 郭晓洁, 雷东记, 张玉贵. 构造煤复电性实验及其特征研究[J]. 煤田地质与勘探, 2015, 43(4):102-105. |
[1] | GUO Xiaojie, LEI Dongji, ZHANG Yugui. Electrical experiment and its characteristics of tectonic coal[J]. Coal Geology & Exploration, 2015, 43(4): 102-105. |
[2] | 刘之的, 王伟, 杨珺茹, 等. 煤及煤层气储层导电特性研究综述与展望[J]. 地球物理学进展, 2020, 35(4):1415-1423. |
[2] | LIU Zhidi, WANG Wei, YANG Junru, et al. Review and prospect of study on conductive properties of coal and CBM reservoirs[J]. Progress in Geophysics, 2020, 35(4): 1415-1423. |
[3] | 门相勇, 王陆新, 王越, 等. 新时代我国油气勘探开发战略格局与2035年展望[J]. 中国石油勘探, 2021, 26(3):1-8. |
[3] | MEN Xiangyong, WANG Luxin, WANG Yue, et al. Strategic pattern of China’s oil and gas exploration and development in the new era and prospects for 2035[J]. China Petroleum Exploration, 2021, 26(3): 1-8. |
[4] | 孙德强, 高文凯, 郑军卫, 等. 制约中国煤层气发展瓶颈问题及政策建议[J]. 中国能源, 2021, 43(1):33-38. |
[4] | SUN Deqiang, GAO Wenkai, ZHENG Junwei, et al. Bottlenecks restricting the development of coalbed methane in China and policy recommendations[J]. Energy of China, 2021, 43(1): 33-38. |
[5] | 陈健杰, 江林华, 张玉贵, 等. 不同煤体结构类型煤的导电性质研究[J]. 煤炭科学技术, 2011, 39(7):90-92. |
[5] | CHEN Jianjie, JIANG Linhua, ZHANG Yugui, et al. Study on coal conductive properties of different coal structure[J]. Coal Science and Technology, 2011, 39(7): 90-92. |
[6] | 李祥春, 陆卫东, 孟洋洋, 等. 微观孔隙结构和煤的成分对煤样电阻率的影响[J]. 采矿与安全工程学报, 2018, 35(1):221-228. |
[6] | LI Xiangchun, LU Weidong, MENG Yangyang, et al. Effects of microscopic pore structure and coal composition on coal resistivity[J]. Journal of Mining & Safety Engineering, 2018, 35(1): 221-228. |
[7] | 李芳, 牛会永, 李石林, 等. 煤介电常数影响因素研究现状及分析[J]. 煤矿安全, 2017, 48(12):218-220. |
[7] | LI Fang, NIU Huiyong, LI Shilin, et al. Research status and analysis of influencing factors of coal dielectric constant[J]. Safety in Coal Mines, 2017, 48(12): 218-220. |
[8] | 郑学召, 赵炬, 张铎, 等. 不同变质程度煤介电常数特性[J]. 西安科技大学学报, 2019, 39(3):469-474. |
[8] | ZHENG Xuezhao, ZHAO Ju, ZHANG Duo, et al. Dielectric constant characteristics of different metamorphic coals[J]. Journal of Xi’an University of Science and Technology, 2019, 39(3): 469-474. |
[9] | 柴斌, 许小凯, 张川, 等. 六种不同变质程度煤的电阻率研究[J]. 地球物理学进展, 2021, 36(3):1046-1051. |
[9] | CHAI Bin, XU Xiaokai, ZHANG Chuan, et al. Characteristics of resistivity and its anisotropy of six kinds of metamorphic coals[J]. Progress in Geophysics, 2021, 36(3): 1046-1051. |
[10] | 任华育, 曹志勇, 童继强, 等. 原生煤和碎裂煤电阻率对比分析[J]. 煤炭技术, 2018, 37(9):139-142. |
[10] | REN Huayu, CAO Zhiyong, TONG Jiqiang, et al. Resistivity analysis of primary structural coal and cataclastic coal[J]. Coal Technology, 2018, 37(9): 139-142. |
[11] | 康建宁, 黄学满. 煤的电性参数与瓦斯突出危险性之间关系研究[J]. 煤炭科学技术, 2005, 33(1):56-59. |
[11] | KANG Jianning, HUANG Xueman. Study on relationship between coal electric parameter and gas outburst danger[J]. Coal Science and Technology, 2005, 33(1): 56-59. |
[12] | 徐宏武. 煤层电性参数测试及其与煤岩特性关系的研究[J]. 煤炭科学技术, 2005, 33(3):41-46. |
[12] | XU Hongwu. Measurement and test of seam electric parameter and study on relationship between seam electric parameter and coal petrology characteristics[J]. Coal Science and Technology, 2005, 33(3): 41-46. |
[13] | 王云刚, 魏建平, 刘明举. 构造软煤电性参数影响因素的分析[J]. 煤炭科学技术, 2010, 38(8):77-80. |
[13] | WANG Yungang, WEI Jianping, LIU Mingju. Analysis on factors affected to electromagetic parameters of tectonic soft seam[J]. Coal Science and Technology, 2010, 38(8): 77-80. |
[14] | 刘保县, 徐龙君, 鲜学福, 等. 煤岩多孔介质及其充瓦斯后的电特性研究[J]. 岩石力学与工程学报, 2004, 23(11):1861-1866. |
[14] | LIU Baoxian, XU Longjun, XIAN Xuefu, et al. Study on electrical properties of rock-coal porous media with gas[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(11): 1861-1866. |
[15] | 陈鹏, 王恩元, 朱亚飞. 受载煤体电阻率变化规律的实验研究[J]. 煤炭学报, 2013, 38(4):548-553. |
[15] | CHEN Peng, WANG Enyuan, ZHU Yafei. Experimental study on resistivity variation regularities of loading coal[J]. Journal of China Coal Society, 2013, 38(4): 548-553. |
[16] | 高丽蓉, 杨甫, 马东民, 等. 基于低温氮吸附的彬长矿区4号煤孔隙分形特征研究[J]. 非常规油气, 2020, 7(5):41-49. |
[16] | GAO Lirong, YANG Fu, MA Dongmin, et al. Research on pore fractal characteristics of No. 4 coal in Binchang mining area based on low-temperature nitrogen adsorption[J]. Unconventional Oil and Gas, 2020, 7(5): 41-49. |
[17] | 井康康, 董旭, 蔺广泉, 等. 低渗储层孔隙结构的分形特征研究——以鄂尔多斯盆地永宁油田顺宁—洛河北区长6储层为例[J]. 非常规油气, 2021, 8(4):19-25. |
[17] | JING Kangkang, DONG Xu, LIN Guangquan, et al. Research on fractal characteristics of pore structure in low permeability reservoirs: Taking Chang 6 reservoir in Shunning-Luohebei area of Yongning Oilfield, Ordos Basin as an example[J]. Unconventional Oil and Gas, 2021, 8(4): 19-25. |
[18] | 陈立, 张英华, 侯玮, 等. 不同温度下可溶有机质对煤电阻率的影响[J]. 哈尔滨工业大学学报, 2019, 51(4):153-162. |
[18] | CHEN Li, ZHANG Yinghua, HOU Wei, et al. The effect of soluble organic matter on coal resistivity at different temperatures[J]. Journal of Harbin Institute of Technology, 2019, 51(4): 153-162. |
[19] | 李祥春, 张琪, 安振兴, 等. 不同煤体电性参数影响因素实验研究[J]. 中国矿业大学学报, 2021, 50(3):570-578. |
[19] | LI Xiangchun, ZHANG Qi, AN Zhenxing, et al. Experimental study of influencing factors of electrical parameters of different kinds of coal mass[J]. Journal of China University of Mining & Technology, 2021, 50(3): 570-578. |
[20] | 李祥春, 张良, 聂百胜, 等. 不同应力和瓦斯压力下煤的相对介电常数变化规律[J]. 矿业科学学报, 2018, 3(4):349-355. |
[20] | LI Xiangchun, ZHANG Liang, NIE Baisheng, et al. Law of relative dielectric constant of coal under different stresses and gas pressures[J]. Journal of Mining Science and Technology, 2018, 3(4): 349-355. |
[21] | 陈鹏, 陈学习, 刘永杰, 等. 瓦斯压力对煤体电阻率影响规律与机制[J]. 煤炭科学技术, 2018, 46(7):109-114. |
[21] | CHEN Peng, CHEN Xuexi, LIU Yongjie, et al. Gas pressure affected to coal resistivity law and mechanism[J]. Coal Science and Technology, 2018, 46(7): 109-114. |
[22] | 康天慧, 董东, 魏建平, 等. 煤电阻率与其瓦斯含量关系的实验研究[J]. 地质与勘探, 2016, 52(5):918-923. |
[22] | KANG Tianhui, DONG Dong, WEI Jianping, et al. An experimental study on the relation-ship between resistivity and gas content of coal[J]. Geology and Exploration, 2016, 52(5): 918-923. |
[23] | 汤小燕, 陈学健, 张晨阳. 低变质原生结构煤电阻率变化规律实验研究[J]. 科学技术与工程, 2019, 19(26):294-299. |
[23] | TANG Xiaoyan, CHEN Xuejian, ZHANG Chenyang. Experimental study on the change law of resistivity in the primary structure coal with low rank[J]. Science Technology and Engineering, 2019, 19(26): 294-299. |
[24] | 薛王龙, 冯增朝, 董东, 等. 不同含水率煤体电阻率随吸附/解吸变化实验研究[J]. 煤炭技术, 2016, 35(10):225-226. |
[24] | XUE Wanglong, FENG Zengchao, DONG Dong, et al. Experimental study on resistivity of different water cut coal volume with change of adsorption/desorption[J]. Coal Technology, 2016, 35(10): 225-226. |
[25] | 马东民, 高正, 陈跃, 等. 不同温度下低、中、高阶煤储层甲烷吸附解吸特征差异[J]. 油气藏评价与开发, 2020, 10(4):17-24. |
[25] | MA Dongmin, GAO Zheng, CHEN Yue, et al. Differences in methane adsorption and desorption characteristics of low, medium and high rank coal reservoirs at different temperatures[J]. Reservoir Evaluation and Development, 2020, 10(4): 17-24. |
[26] | 李松林, 冯霞. 物理化学(下册)[M].第六版. 北京: 高等教育出版社, 2017:25-40. |
[26] | LI Songlin, FENG Xia. Physical chemistry(sixth edition) Volume Ⅱ[M]. 6+h ed. Beijing: Higher Education Press, 2017: 25-40. |
[27] | 白少先, 黄平. 双电层电黏度对润滑性能的影响研究[J]. 摩擦学学报, 2004, 24(2):168-171. |
[27] | BAI Shaoxian, HUANG Ping. Effect of electro-viscosity of electric double layer on lubricating performance[J]. Tribology, 2004, 24(2): 168-171. |
[28] | CHEN Y, MA Z Y, MA D M, et al. Characteristics of the coal fines produced from low-rank coal reservoirs and their wettability and settleability in the Binchang Area, South Ordos Basin, China[J]. Geofluids, 2021, 2021: 1-15. |
[29] | ZHANG C, MA D M, CHEN Y, et al. Pore structure of different macroscopically distinguished components within low-rank coals and its methane desorption characteristics[J]. Fuel, 2021, 293: 1-10. |
/
〈 | 〉 |