方法理论

煤岩润湿性对煤层气赋存的影响机理

  • 朱苏阳 ,
  • 孟尚志 ,
  • 彭小龙 ,
  • 李相臣 ,
  • 张千贵 ,
  • 张斯
展开
  • 1.西南石油大学石油与天然气工程学院,四川 成都 610500
    2.中联煤层气有限责任公司,北京 100000
朱苏阳(1989—),男,博士后,副教授,主要从事油藏工程、煤层气开发、页岩气开发、渗流力学、数值模拟方面的研究。地址:四川省成都市新都区新都大道8号国重B404,邮政编码:610500。E-mail: 1546287562@qq.com

收稿日期: 2022-05-24

  网络出版日期: 2022-09-02

基金资助

中国工程院战略研究与咨询项目“我囯煤层气有效开发发展战略研究”(2021-XY-25);国家自然科学基金青年基金“基于煤粉群运移动力学特征的煤层气—水—固耦合传质机理研究”(52104036)

Mechanism of coal wettability on storage state of undersaturated CBM reservoirs

  • Suyang ZHU ,
  • Shangzhi MENG ,
  • Xiaolong PENG ,
  • Xiangchen LI ,
  • Qiangui ZHANG ,
  • Si ZHANG
Expand
  • 1. Petroleum Engineering School, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    2. Zhonglian Coalbed Methane Co., LTD., Beijing 100000, China

Received date: 2022-05-24

  Online published: 2022-09-02

摘要

岩石对流体的润湿性决定了孔隙中流体的分布特征,多孔介质中的小孔隙优先被润湿相流体占据。基于这一原理,分析了目前煤岩润湿性实验与煤层气赋存状态的矛盾,从煤岩润湿性的角度,提出了两种可能的煤层气宏观赋存模式。如果煤岩亲气,甲烷在毛管压力的作用下,可以被割理中的水封闭在煤基质中。由于煤基质和割理界面处的毛管压力,煤层气的吸附是平衡的,但赋存可以出现欠饱和状态,这也是排采过程中出现临界解吸现象的原因。当煤岩水相润湿时,水相需要占据煤岩中的小孔隙(基质),甲烷可以通过液相吸附的形态储存在基质中。液相吸附中,排采过程的临界解吸源自欠饱和的煤层气溶解状态。通过煤层气液相吸附的验证实验,也表明甲烷可以通过液相吸附的形式大量赋存于煤层中。

本文引用格式

朱苏阳 , 孟尚志 , 彭小龙 , 李相臣 , 张千贵 , 张斯 . 煤岩润湿性对煤层气赋存的影响机理[J]. 油气藏评价与开发, 2022 , 12(4) : 580 -588 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.04.005

Abstract

The wettability decides the fluid distribution in porous media, and the wet-phase fluid will primarily occupy the smaller pore. Based on this principle, the paradox between laboratory test of coal wettability and state of fluids distribution is analyzed. On the view of wettability, two possible coalbed methane(CBM) storage types are proposed. When the coal is gas-phase wettability, owing to capillary pressure, the free gas and adsorption gas can be trapped in matrix (smaller pore system) by the water in cleat (larger pore system). In matrix system, the sorption of gas is in equilibrium state, but the storage of gas is in the undersaturated state. The critical desorption process results from the capability pressure of water and gas. When the coal is water-phase wettability, the matrix is saturated by water, and the coalbed methane can store in the matrix in liquid-phase sorption state. This study designs the experiment to validate the gas liquid-phase sorption. The results indicate that a mass of methane can be adsorbed in the matrix in the liquid-phase sorption mode.

参考文献

[1] 宋岩, 李卓, 姜振学, 等. 非常规油气地质研究进展与发展趋势[J]. 石油勘探与开发, 2017, 44(4):638-648.
[1] SONG Yan, LI Zhuo, JIANG Zhenxue, et al. Progress and development trend of unconventional oil and gas geological research[J]. Petroleum Exploration and Development, 2017, 44(4): 638-648.
[2] 朱苏阳, 彭小龙, 张守仁, 等. 欠饱和煤层气藏中气体赋存状态的思考与讨论[C]// 中国煤层气勘探开发技术与产业化发展战略—2019年煤层气学术研讨会论文集, 2019:311-317.
[2] ZHU Suyang, PENG Xiaolong, ZHANG Shouren, et al. Thoughts and discussion on storage state of undersaturated coalbed methane reservoirs[C]// China's Coalbed Methane Exploration and Development Technology and Industrialization Development Strategy--2019 Coalbed Methane Symposium Proceedings, 2019: 311-317.
[3] 杨兆彪, 李洋阳, 秦勇, 等. 煤层气多层合采开发单元划分及有利区评价[J]. 石油勘探与开发, 2019, 46(3):559-568.
[3] YANG Zhaobiao, LI Yangyang, QIN Yong, et al. Development unit division and favorable area evaluation for joint mining coalbed methane[J]. Petroleum Exploration and Development, 2019, 46(3): 559-568.
[4] 王西贵, 邹德永, 杨立文, 等. 深层超深层煤层气保压取心工具设计[J]. 石油机械, 2020, 48(1):40-45.
[4] WANG Xigui, ZOU Deyong, YANG Liwen, et al. Design of a Pressure-Preservation Coring Tool for Deep and Ultra-Deep Coalbed Methane Samples[J]. China Petroleum Machinery, 2020, 48(1): 40-45.
[5] 康志勤, 李翔, 李伟, 等. 煤体结构与甲烷吸附/解吸规律相关性实验研究及启示[J]. 煤炭学报, 2018, 43(5):1400-1407.
[5] KANG Zhiqin, LI Xiang, LI Wei, et al. Experimental investigation of methane adsorption / desorption behavior in coals with different coal-body structure and its revelation[J]. Journal of China Coal Society, 2018, 43(5): 1400-1407.
[6] 朱峰, 郭智栋, 陈世波, 等. 煤层气连续管排液采气一体化工艺研究与应用[J]. 石油机械, 2021, 49(1):118-123.
[6] ZHU Feng, GUO Zhidong, CHEN Shibo, et al. Research and application of the integrated technology of liquid drainage and CBM production by coiled tubing[J]. China Petroleum Machinery, 2021, 49(1): 118-123.
[7] FENG Q H, ZHANG J Y, ZHANG X M, et al. Optimizing well placement in a coalbed methane reservoir using the particle swarm optimization algorithm[J]. International Journal of Coal Geology, 2012, 104: 34-45.
[8] 罗平亚. 关于大幅度提高我国煤层气井单井产量的探讨[J]. 天然气工业, 2013, 33(6):1-6.
[8] LUO Pingya. A discussion on how to significantly improve the single-well productivity of CBM gas wells in China.[J]. Nature Gas Industry, 2013, 33(6): 1-6.
[9] SEIDLE J. Fundamentals of coalbed methane reservoir engineering[M]. Tulsa: PennWell Books, 2011.
[10] 村田逞诠. 煤的润湿性研究及其应用[M]. 北京: 煤炭工业出版社, 1992.
[10] MURATA Takusen. The study and application of coal wettability[M]. Beijing: Geology Industry Press, 1992.
[11] NIU C, XIA W, PENG Y. Analysis of coal wettability by inverse gas chromatography and its guidance for coal flotation[J]. Fuel, 2018, 228: 290-296.
[12] 李娇阳, 李凯琦. 煤表面润湿性的影响因素[J]. 煤炭学报, 2016, 41(S2):448-453.
[12] LI Jiaoyang, LI Kaiqi. Influence factors of coal surface wettability[J]. Journal of China Coal Society, 2016, 41(S2): 448-453.
[13] 苏雪峰, 刘岩, 崔周旗, 等. 降压速率对沁水盆地南部高阶煤产气能力的影响[J]. 石油勘探与开发, 2019, 46(3):613-620.
[13] SU Xuefeng, LIU Yan, CUI Zhouqi, et al. Influence of depressurization rate on gas production capacity of high-rank coal in the south of Qinshui Basin, China[J]. Petroleum Exploration and Development, 2019, 46(3): 613-620.
[14] 孟艳军, 汤达祯, 许浩, 等. 煤层气解吸阶段划分方法及其意义[J]. 石油勘探与开发, 2014, 41(5):612-617.
[14] MENG Yanjun, TANG Dazhen, XU hao, et al. Division of coalbed methane desorption stages and its significance[J]. Petroleum Exploration and Development, 2014, 41(5): 612-617.
[15] 李传亮. 油藏工程原理[M]. 第2版. 北京: 石油工业出版社, 2011.
[15] LI Chuanliang. Fundamentals of reservoir engineering[M]. 2nd ed. Beijing: Petroleum Industry Press, 2011.
[16] 邹才能. 非常规油气地质[M]. 第2版 北京: 地质出版社, 2013.
[16] ZOU Caineng. Geology of unconventional oil and gas reservoirs[M]. 2nd ed. Beijing: The Geology Press, 2013.
[17] 彭小龙, 费冬, 朱苏阳, 等. 煤层气吸附-解吸机理再认识[J]. 中国煤层气, 2019, 16(2):9-12.
[17] PENG Xiaolong, FEI Dong, ZHU Suyang, et al. Reconsideration of coalbed methane adsorption-desorption mechanism[J]. China Coalbed Methane, 2019, 16(2): 9-12.
[18] 傅献彩, 沈文霞, 姚天扬, 等. 物理化学[M].第5版. 北京: 高等教育出版社, 2006.
[18] FU Xiancai, SHEN Wenxia, YAO Tianyang, et al. Physical chemistry[M]. 5th ed. Beijing: Advance Education Press, 2006.
[19] ATKINS P, DE PAULA J. Physical Chemistry[M]. 9th ed. Boca Raton: W.H. Freeman, 2009.
[20] HIEMENZ P C, RAJAGOPALAN R. Principles of colloid and surface chemistry, revised and expanded[M]. 3rd ed. Boca Raton: Chemical Rubber Company Press, 1997.
[21] 近藤精一, 石川达雄, 安部郁夫. 吸附科学[M]. 第2版. 北京: 化学工业出版社,2006.
[21] KONDO Seiichi, ISHIKAWA Tatsuo, ABE Ikuo. Science of adsorption[M]. 2nd ed. Beijing: Chemical Industry Press, 2006.
[22] 朱苏阳. 煤层气的吸附-解吸机理及应用研究[D]. 成都: 西南石油大学, 2018.
[22] ZHU Suyang. The mechanism and application studies on coalbed methane adsorption and desorption[D]. Chengdu: Southwest Petroleum University, 2018.
[23] 朱苏阳, 李传亮, 杜志敏, 等. 也谈煤层气的液相吸附[J]. 新疆石油地质, 2015, 36(5):101-104.
[23] ZHU Suyang, LI Chuanliang, DU Zhimin, et al. Discussion on liquid phase adsorption of coalbed methane[J]. Xinjiang Petroleum Geology, 2015, 36(5): 101-104.
[24] 邵长奎. 煤储层开发三相态含气量动态数值模拟研究[D]. 徐州: 中国矿业大学,2014.
[24] SHAO Changkui. Numerical simulation of three phase gas content dynamic changes in recovery of coal reservoirs[D]. Xuzhou: China University of Mining and Technology, 2014.
[25] MOORE T A. Coalbed methane: A review[J]. International Journal of Coal Geology, 2012, 101(6): 36-81.
[26] 杨兆彪, 吴丛丛, 张争光, 等. 煤层气产出水的地球化学意义——以贵州松河区块开发试验井为例[J]. 中国矿业大学学报, 2017, 46(4):830-837.
[26] YANG Zhaobiao, WU Congcong, ZHANG Zhengguang, et al. Geochemical significance of CBM produced water: A case study of developed test wells in Songhe block of Guizhou Province[J]. Journal of China University of Mining and Technology, 2017, 46(4): 830-837.
[27] 康园园, 邵先杰, 王彩凤. 高—中煤阶煤层气井生产特征及影响因素分析—以樊庄、韩城矿区为例[J]. 石油勘探与开发, 2012, 39(6):728-732.
[27] KANG Yuanyuan, SHAO Xianjie, WANG Caifeng. Production characteristics and affecting factors of high-mid rank coalbed methane wells: Taking Fanzhuang and Hancheng mining areas as examples[J]. Petroleum Exploration and Development, 2012, 39(6): 728-732.
[28] 傅雪海, 秦勇, 韦重韬. 煤层气地质学[M]. 徐州: 中国矿业大学出版社, 2007.
[28] FU Xuehai, QIN Yong, WEI Chongtao. Geology of coalbed methane[M]. Xuzhou: China University of Mining and Technology Press, 2007.
[29] CLARKSON C R, QANBARI F. Transient flow analysis and partial water relative permeability curve derivation for low permeability undersaturated coalbed methane wells[J]. International Journal of Coal Geology, 2015, 152: 110-124.
[30] KHAVARI-KHORASANI G, MICHELSEN J K. Coal bed gas content and gas undersaturation[M]. Netherlands: Kluwer Academic Publishers, 1999.
[31] 胡素明, 李相方, 胡小虎, 等. 欠饱和煤层气藏的生产动态预测方法[J]. 西南石油大学学报(自然科学版), 2012, 34(5):119-124.
[31] HU Suming, LI Xiangfang, HU Xiaohu, et al. Production performance prediction method for undersaturated CBM reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2012, 34(5): 119-124.
[32] 朱苏阳, 李传亮, 杜志敏, 等. 煤层气的复合解吸模式研究[J]. 中国矿业大学学报, 2016, 45(2):316-324.
[32] ZHU Suyang, LI Chuanliang, DU Zhimin, et al. Compound desorption model of coalbed methane[J]. Journal of China University of Mining & Technology, 2016, 45(2): 316-324.
文章导航

/