油气藏评价与开发 >
2022 , Vol. 12 >Issue 4: 604 - 616
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2022.04.008
基于相场法的裂缝性地层压裂裂缝延伸特征研究
收稿日期: 2021-10-22
网络出版日期: 2022-09-02
基金资助
四川省科技计划项目“页岩压裂的损伤力学特征研究”(2020JDJQ0059)
Hydraulic fracture extension characteristics of fractured formation based on phase field method
Received date: 2021-10-22
Online published: 2022-09-02
基于相场法理论建立了多孔弹性地层中压裂裂缝延伸模型,在该模型中,流体流动遵循达西定律,岩石的渗透率各向异性,且是岩石最大主应变的函数。通过3个不同时间步长算例验证了模型的收敛性,并基于建立的模型,研究了原地应力差、相交角、注入速率和压裂液黏度对水力裂缝与天然裂缝相交后延伸轨迹的影响。研究表明:①水力裂缝只能开启天然裂缝的一翼;②相交角和原地应力差越小,水力裂缝越容易开启天然裂缝;③提高注入速率有利于完全开启天然裂缝,因此,压裂施工过程中,在井口装备和地下管柱强度允许的条件下应尽量提高施工排量;④注入压力随注入速率和流体黏度的增加而增加。最后通过将研究模型模拟结果和前人物理模拟实验结果进行对比,验证了模型的可靠性。
易良平 , 张丹 , 杨若愚 , 肖佳林 , 李小刚 , 杨兆中 . 基于相场法的裂缝性地层压裂裂缝延伸特征研究[J]. 油气藏评价与开发, 2022 , 12(4) : 604 -616 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.04.008
Based on the theory of phase field method, a model of fracture propagation in porous elastic formation is established. In the proposed model, the fluid flow in the porous rock obeys Darcy’s seepage law, and the permeability of rock is anisotropic and a function of the maximum principal strain. The convergence of the model is verified by comparing the results of three different time steps cases. Meanwhile, based on the proposed model, the effects of the in-situ stress difference, intersection angle, injection rate, and fracturing fluid viscosity on the intersection behaviour of hydraulic and natural fractures are investigated. The results indicate that: ① The hydraulic fracturing can solely make one side of the natural fracture open; ② The smaller the intersection angle and in-situ stress difference, the easier the hydraulic fracture is to open the natural fracture; ③ Increasing injection rate is beneficial to completely open the natural fractures, therefore, in the process of fracturing construction, the construction displacement should be increased as much as possible under the conditions of wellhead equipment and underground string strength; ④ The injection pressure increases with the increase of injection rate and fluid viscosity. Finally, the reliability of this model is verified by comparing the simulation results of this model with those of previous laboratory experiments.
[1] | 李英杰, 钟立博, 左建平. 页岩Ⅰ型裂纹遇层理起裂扩展准则研究[J]. 中国矿业大学学报, 2020, 49(3):488-498. |
[1] | LI Yingjie, ZHONG Libo, ZUO Jianping. Crack initiation and propagation criteria of mode I crack encountering bedding plane for shale[J]. Journal of China University of Mining& Technology, 2020, 49(3): 488-498. |
[2] | 张丰收, 吴建发, 黄浩勇, 等. 提高深层页岩裂缝扩展复杂程度的工艺参数优化[J]. 天然气工业, 2021, 41(1):125-135. |
[2] | ZHANG Fengshou, WU Jianfa, HUANG Haoyong, et al. Technological parameter optimization for improving the complexity of hydraulic fractures in deep shale reservoirs[J]. Natural Gas Industry, 2021, 41(1): 125-135. |
[3] | 郭建春, 赵志红, 路千里, 等. 深层页岩缝网压裂关键力学理论研究进展[J]. 天然气工业, 2021, 41(1):102-117. |
[3] | GUO Jianchun, ZHAO Zhihong, LU Qianli, et al. Research progress in key mechanical theories of deep shale network fracturing[J]. Natural Gas Industry, 2021, 41(1): 102-117. |
[4] | 刘顺, 何衡, 赵倩云, 等. 水力裂缝与天然裂缝交错延伸规律[J]. 石油学报, 2018, 39(3):320-326. |
[4] | LIU Shun, HE Heng, ZHAO Qianyun, et al. Staggered extension laws of hydraulic fracture and natural fracture[J]. Acta Petrolei Sinica, 2018, 39(1): 320-326. |
[5] | ZHOU J, CHEN M, JIN Y, et al. Analysis of fracture propagation behaviour and fracture geometry using a tri-axial fracturing system in naturally fractured reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(7): 1143-1152. |
[6] | 范铁刚, 张广清. 注液速率及压裂液黏度对煤层水力裂缝形态的影响[J]. 中国石油大学学报(自然科学版), 2014, 38(4):117-123. |
[6] | FAN Tiegang, ZHANG Guangqing. Influence of injection rate and fracturing fluid viscosity on hydraulic fracture geometry in coal[J]. Journal of China University of Petroleum, 2014, 38(4): 117-123. |
[7] | 考佳玮, 金衍, 付卫能, 等. 深层页岩在高水平应力差作用下压裂裂缝形态实验研究[J]. 岩石力学与工程学报, 2018, 37(6):37-44. |
[7] | KAO Jiawei, JIN Yan, FU Weineng, et al. Experimental research on the morphology of hydraulic fractures in deep shale under high difference of in-situ horizontal stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 37-44. |
[8] | 侯冰, 程万, 陈勉, 等. 裂缝性页岩储层水力裂缝非平面扩展实验[J]. 天然气工业, 2014, 34(12):81-86. |
[8] | HOU Bing, CHENG Wan, CHEN Mian, et al. Experiments on the non-planar extension of hydraulic fractures in fractured shale gas reservoirs[J]. Natural Gas Industry, 2014, 34(12): 81-86. |
[9] | 曾义金, 周俊, 王海涛, 等. 深层页岩真三轴变排量水力压裂物理模拟研究[J]. 岩石力学与工程学报, 2019, 38(9):1758-1766. |
[9] | ZENG Yijin, ZHOU Jun, WANG Haitao, et al. Research on true triaxial hydraulic fracturing in deep shale with varying pumping rates[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(9): 1758-1766. |
[10] | BEHNIA M, GOSHTASBI K, MARJI M F, et al. Numerical simulation of interaction between hydraulic and natural fractures in discontinuous media[J]. Acta Geotechnica, 2015, 10(4): 533-546. |
[11] | WU K, OLSON J E. Numerical investigation of complex hydraulic-fracture development in naturally fractured reservoirs[J]. SPE Production & Operations, 2016, 31(4): 38-52. |
[12] | TANG J Z, WU K, LI Y C, et al. Numerical investigation of the interactions between hydraulic fracture and bedding planes with non-orthogonal approach angle[J]. Engineering Fracture Mechanics, 2018, 200: 1-16. |
[13] | CHANG X, GUO Y, ZHOU J, et al. Numerical and experimental investigations of the interactions between hydraulic and natural fractures in shale formations[J]. Energies, 2018, 11(10): 2541. |
[14] | CHEN Z, YANG Z, WANG M. Hydro-mechanical coupled mechanisms of hydraulic fracture propagation in rocks with cemented natural fractures[J]. Journal of Petroleum Science & Engineering, 2018, 163: 421-434. |
[15] | LIU Z, XU H, ZHAO Z, et al. Modeling of interaction between the propagating fracture and multiple pre-existing cemented discontinuities in shale[J]. Rock Mechanics and Rock Engineering, 2019, 52(6): 1993-2001. |
[16] | GUO J C, ZHAO X, ZHU H Y, et al. Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method[J]. Journal of Natural Gas Science & Engineering, 2015, 25: 180-188. |
[17] | CORDERO J A R, SANCHEZ E C M, ROEHL D, et al. Hydro-mechanical modeling of hydraulic fracture propagation and its interactions with frictional natural fractures[J]. Computers and Geotechnics, 2019, 111: 290-300. |
[18] | SUO Y, CHEN Z X, YAN H, et al. Using cohesive zone model to simulate the hydraulic fracture interaction with natural fracture in poro-viscoelastic formation[J]. Energies, 2019, 12(7): 1254. |
[19] | DAHI-TALEGHANI A, OLSON J E. Numerical modeling of multistranded-hydraulic-fracture propagation: Accounting for the interaction between induced and natural fractures[J]. SPE Journal, 2011, 16(3): 575-581. |
[20] | WANG X L, SHI F, LIU C, et al. Extended finite element simulation of fracture network propagation in formation containing frictional and cemented natural fractures[J]. Journal of Natural Gas Science and Engineering, 2018, 50: 309-324. |
[21] | SHI F, WANG X, LIU C, et al. An XFEM-based method with reduction technique for modeling hydraulic fracture propagation in formations containing frictional natural fractures[J]. Engineering Fracture Mechanics, 2017, 173: 64-90. |
[22] | NGUYEN T T, YVONNET J, ZHU Q Z, et al. A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography[J]. Computer Methods in Applied Mechanics & Engineering, 2016, 312: 567-595. |
[23] | LIANG X, YVONNET J, GHABEZLOO S. Phase field modeling of hydraulic fracturing with interfacial damage in highly heterogeneous fluid-saturated porous media[J]. Engineering Fracture Mechanics, 2017, 186: 158-180. |
[24] | MIEHE C, MAUTHE S. Phase field modeling of fracture in multi-physics problems. Part Ⅲ. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 304(1): 619-655. |
[25] | 易良平, 胡滨, 李小刚, 等. 基于相场法的煤砂互层水力裂缝纵向延伸计算模型[J]. 煤炭学报, 2020, 45(S2):706-716. |
[25] | YI Liangping, HU Bin, LI Xiaogang, et al. Calculation model of hydraulic crack vertical propagation in coal-sand interbedded formation based on the phase field method[J]. Journal of China Coal Society, 2020, 45(S2): 706-716. |
[26] | FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics & Physics of Solids, 1998, 46(8): 1319-1342. |
[27] | BOURDIN B, FRANFORT G A, MARIGO J J. The variational approach to fracture[J]. Journal of Elasticity, 2008, 91(1): 5-148. |
[28] | MIEHE C, WELSCHINGER F, HOFACKER M. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations[J]. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273-1311. |
[29] | ZHOU S W, RABCZUK T, ZHUANG X Y. Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies[J]. Advances in Engineering Software, 2018, 122: 31-49. |
[30] | ZHOU S W, ZHUANG X Y, RABCZUK T. A phase-field modeling approach of fracture propagation in poroelastic media[J]. Engineering Geology, 2018, 240(5): 189-203. |
[31] | 易良平. 致密砂岩储层水力压裂裂缝延伸关键理论问题研究[D]. 成都: 西南石油大学, 2020. |
[31] | YI Liangping. Study on key theoretical problems of hydraulic fracture extension in the tight sandstone reservoir[D]. Chengdu: Southwest Petroleum University, 2020. |
[32] | BIOT M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164. |
[33] | EMDADI A, FAHRENHOLTZ W G, HILMAS G E, et al. A modified phase-field model for quantitative simulation of crack propagation in single-phase and multi-phase materials[J]. Engineering Fracture Mechanics, 2018, 200: 339-354. |
/
〈 | 〉 |