矿场应用

煤层气井堵塞型递减原因分析及治理——以延川南煤层气田为例

  • 刘晓 ,
  • 崔彬 ,
  • 吴展
展开
  • 1.中国石化临汾煤层气分公司,山西 临汾 041000
    2.中国石化华东油气分公司,江苏 南京 200019
刘晓(1982—),男,硕士,高级工程师,从事非常规煤层气勘探开发工作。地址:山西省临汾市尧都区华州路九星佳苑临汾煤层气分公司,邮政编码:041000。E-mail: 47186025@qq.com

收稿日期: 2022-05-10

  网络出版日期: 2022-09-02

Cause analysis and treatment of coal-bed gas well plugging decline: A case study of southern Yanchuan CBM Field

  • Xiao LIU ,
  • Bin CUI ,
  • Zhan WU
Expand
  • 1. Linfen Coalbed Methane Branch of Sinopec, Linfen, Shanxi 041000, China
    2. Sinopec East China Oil and Gas Company, Nanjing, Jiangsu 200019, China

Received date: 2022-05-10

  Online published: 2022-09-02

摘要

延川南煤层气田部分井在生产过程中出现产气、产液异常快速递减的堵塞型生产特征。为了分析堵塞产生的原因,基于气井产液、水质、检泵等生产动态信息的变化,明确了堵塞主因包括结垢和煤粉两个方面,在分析结垢和煤粉堵塞形成机理的基础上开展了针对性预防和治理措施。针对结垢堵塞井形成常态化阻垢剂防垢与多级脉冲冲击波解堵相结合的防治措施,16口井增产效果较好,平均单井累计增产30.11×104 m3。针对煤粉堵塞井形成自循环和空心杆洗井携煤粉工艺及氮气泡沫洗井解堵治理措施,洗井携煤粉工艺可有效缓解煤粉堵泵等导致的检泵,气井免修期延长60 %;氮气泡沫解堵应用4口井均取得显著增产效果,平均单井增产1.25×104 m3/d。成果认识为堵塞型煤层气井原因分析和治理对策提供了借鉴。

关键词: 深煤层; 煤粉; 结垢; 堵塞; 解堵

本文引用格式

刘晓 , 崔彬 , 吴展 . 煤层气井堵塞型递减原因分析及治理——以延川南煤层气田为例[J]. 油气藏评价与开发, 2022 , 12(4) : 626 -632 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.04.010

Abstract

In the production process, part of the wells in southern Yanchuan CBM Field has the plugging characteristics of abnormal and rapid decline of gas production and liquid production. In order to analyze the causes of blockage, based on the changes of the production dynamic information of the liquid recovery, water quality and pump check of wells, the main cause of plugging is clarified, including scaling and pulverized coal. On the basis of analyzing the formation mechanism of scaling and pulverized coal blockage, the targeted prevention and treatment measures are carried out. For the scaling plugging wells, form a treatment measure combining the normal prevention by adding scale inhibitor and the plugging removal by multi-stage pulse shock wave. 16 wells implemented by multi-stage pulse shock wave have got a good production increase with an average production increase of 30.11×104 m3 per well. For the pulverized coal plugging wells, coal-carrying process by self-circulation and hollow rod well washing, and nitrogen foam well-unblocking treatment measures are formed. Well washing for carrying pulverized coal effectively alleviate the pump check caused by pulverized coal blocking pump, the gas well repair free period extended by 60 %. Four wells applied the nitrogen foam for unblocking achieve significant production increase, with an average daily production increase of 1.25×104 m3 per well. The results provide references for the cause analysis and treatment of blocked CBM wells.

参考文献

[1] 贾慧敏, 胡秋嘉, 祁空军, 等. 高阶煤煤层气直井低产原因分析及增产措施[J]. 煤田地质与勘探, 2019, 47(5):104-110.
[1] JIA Huimin, HU Qiujia, QI Kongjun, et al. Reasons of low yield and stimulation measures for vertical CBM wells in high-rank coal[J]. Coal Geology & Exploration, 2019, 47(5): 104-110.
[2] 倪小明, 赵政, 刘度, 等. 柿庄南区块煤层气低产井原因分析及增产技术对策研究[J]. 煤炭科学技术, 2020, 48(2):176-184.
[2] NI Xiaoming, ZHAO Zheng, LIU Du, et al. Study on cause of low production and countermeasures of increasing production technology about coalbed methane wells in Shizhuang South Block[J]. Coal Science and Technology, 2020, 48(2): 176-184.
[3] 张遂安, 刘欣佳, 温庆志, 等. 煤层气增产改造技术发展现状与趋势[J]. 石油学报, 2021, 42(1):105-118.
[3] ZHANG Sui’an, LIU Xinjia, WEN Qingzhi, et al. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica, 2021, 42(1): 105-118.
[4] 桑树勋, 周效志, 刘世奇, 等. 应力释放构造煤煤层气开发理论与关键技术研究进展[J]. 煤炭学报, 2020, 45(7):2531-2543.
[4] SANG Shuxun, ZHOU Xiaozhi, LIU Shiqi, et al. Research advances in theory and technology of the stress release applied extraction of coalbed methane from tectonically deformed coals[J]. Journal of China Coal Society, 2020, 45(7): 2531-2543.
[5] 赵武鹏, 刘春春, 申兴伟, 等. 郑庄区块煤层气低产井增产技术研究[J]. 石油钻采工艺, 2017, 39(4):491-494.
[5] ZHAO Wupeng, LIU Chunchun, SHEN Xingwei, et al. Study on the stimulation technologies for low-yield CBM wells in Zhengzhuang Block[J]. Oil Drilling & Production Technology, 2017, 39(4): 491-494.
[6] 武男, 陈东, 孙斌, 等. 基于分类方法的煤层气井压裂开发效果评价[J]. 煤炭学报, 2018, 43(6):1694-1700.
[6] WU Nan, CHEN Dong, SUN Bin, et al. Evaluation on fracturing effect based on classification method[J]. Journal of China Coal Society, 2018, 43(6): 1694-1700.
[7] 卢凌云, 张遂安, 郭文朋, 等. 煤层气直井低产原因与高产因素诊断分析[J]. 非常规油气, 2017, 4(5):71-75.
[7] LU Lingyun, ZHANG Sui’an, GUO Wenpeng, et al. The diagnosis and analysis of the low-yield cause and high-yield factor of vertical well in coalbed methane[J]. Unconventional Oil & Gas, 2017, 4(5): 71-75.
[8] 李莹, 郑瑞, 罗凯, 等. 筠连地区煤层气低产低效井成因及增产改造措施[J]. 煤田地质与勘探, 2020, 48(4):146-155.
[8] LI Ying, ZHENG Rui, LUO Kai, et al. Reasons of low yield and stimulation measures for CBM wells in Junlian area[J]. Coal Geology & Exploration, 2020, 48(4): 146-155.
[9] 桑树勋, 韩思杰, 刘世奇, 等. 高煤阶煤层气富集机理的深化研究[J]. 煤炭学报, 2022, 47(1):388-403.
[9] SANG Shuxun, HAN Sijie, LIU Shiqi, et al. Comprehensive study on the enrichment mechanism of coalbed methane in high rank coal reservoirs[J]. Journal of China Coal Society, 2022, 47(1): 388-403.
[10] 门相勇, 韩征, 宫厚健, 等. 新形势下中国煤层气勘探开发面临的挑战与机遇[J]. 天然气工业, 2018, 38(9):10-16.
[10] MEN Xiangyong, HAN Zheng, GONG Houjian, et al. Challenges and opportunities of CBM exploration and development in China under new situations[J]. Natural Gas Industry, 2018, 38(9): 10-16.
[11] 孙晗森. 我国煤层气压裂技术发展现状与展望[J]. 中国海上油气, 2021, 33(4):120-128.
[11] SUN Hansen. Development status and prospect of CBM fracturing technology in China[J]. China Offshore Oil and Gas, 2021, 33(4): 120-128.
[12] 徐凤银, 闫霞, 林振盘, 等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探, 2022, 50(3):1-14.
[12] XU Fengyin, YAN Xia, LIN Zhenpan, et al. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration, 2022, 50(3): 1-14.
[13] 闫欣璐, 唐书恒, 张松航, 等. 沁水盆地柿庄南区块煤层气低效井二次改造研究[J]. 煤炭科学技术, 2018, 46(6):119-125.
[13] YAN Xinlu, TANG Shuheng, ZHANG Songhang, et al. Study on reconstruction of inefficient well of coalbed methane in southern Shizhuang Block of Qingshui Basin[J]. Coal Science and Technology, 2018, 46(6): 119-125.
[14] 崔新瑞, 张建国, 刘忠, 等. 煤层气水平井井眼堵塞原因分析及治理措施探索[J]. 中国煤层气, 2016, 13(6):31-34.
[14] CUI Xinrui, ZHANG Jianguo, LIU Zhong. Reason analysis and control measures exploration of hole blocking for CBM horizontal well[J]. China Coalbed Methane, 2016, 13(6): 31-34.
[15] 彭丽莎, 张毅敏, 熊威, 等. 四川筠连地区高阶煤煤层气井解堵技术及应用[J]. 煤田地质与勘探, 2021, 49(5):132-138.
[15] PENG Lisha, ZHANG Yimin, XIONG Wei, et al. De-blocking technology of CBM wells of the high-rank coal and their application in Junlian area in Sichuan Province[J]. Coal Geology & Exploration, 2021, 49(5): 132-138.
[16] 曹运兴, 石玢, 周丹, 等. 煤层气低产井高压氮气闷井增产改造技术与应用[J]. 煤炭学报, 2019, 44(8):2556-2565.
[16] CAO Yunxing, SHI Bin, ZHOU Dan, et al. Study and application of stimulation technology for low production CBM well through high pressure N2 injection-soak[J]. Journal of China Coal Society, 2019, 44(8): 2556-2565.
[17] 魏迎春, 张劲, 曹代勇, 等. 煤层气开发中煤粉问题的研究现状及研究思路[J]. 煤田地质与勘探, 2020, 48(6):116-124.
[17] WEI Yingchun, ZHANG Jing, CAO Daiyong, et al. Research status and thoughts for coal fines during CBM development[J]. Coal Geology & Exploration, 2020, 48(6): 116-124.
[18] 李袖臣, 张文, 吕洋, 等. 煤层气排采井防煤粉技术研究[J]. 湖北大学学报(自然科学版), 2021, 43(5):498-501.
[18] LI Xiucheng, ZHANG Wen, LYU Yang, et al. Coal powder control technology for coalbed methane well[J]. Journal of Hubei University (Natural Science), 2021, 43(5): 498-501.
[19] 郭智栋, 曾雯婷, 方惠军, 等. 重复脉冲强冲击波技术在煤储层改造中的初步应用[J]. 中国石油勘探, 2019, 24(3):397-402.
[19] GUO Zhidong, ZENG Wengting, FANG Huijun, et al. Initial application of intense repeated pulse wave for stimulating CBM reservoirs[J]. China Petroleum Exploration, 2019, 24(3): 397-402.
[20] 王喆. 可控冲击波解堵增透技术在延川南煤层气田中的应用[J]. 油气藏评价与开发, 2020, 10(4):87-92.
[20] WANG Zhe. Application of controllable shock wave plugging removal and permeability improvement technology in CBM gas field of Southern Yanchuan[J]. Reservoir Evaluation and Development, 2020, 10(4): 87-92.
文章导航

/