矿场应用

寿阳地区15号煤层地下水动力场特征及控气作用

  • 王文升 ,
  • 张亚飞 ,
  • 杜丰丰 ,
  • 韩冬 ,
  • 倪小明
展开
  • 1.中海油能源发展股份有限公司工程技术分公司,天津 300450
    2.中联煤层气有限责任公司,北京 100010
    3.河南理工大学能源科学与工程学院,河南 焦作,454000
王文升(1978—),男,硕士,高级工程师,主要从事开发地质及非常规油气研究。地址:天津滨海新区滨海新村西区合作楼,邮政编码:300452。E-mail: Wangwsh5@cnooc.com.cn

收稿日期: 2022-04-13

  网络出版日期: 2022-09-02

Characteristics of groundwater dynamic field and it’s controlling gas effects in No. 15 coal seam of Shouyang area

  • Wensheng WANG ,
  • Yafei ZHANG ,
  • Fengfeng DU ,
  • Dong HAN ,
  • Xiaoming NI
Expand
  • 1. CNOOC Energy Tech-Drilling & Production Co., Tianjin 300450, China
    2. China United Coalbed Methane Corporation Ltd., Beijing 100010, China
    3. School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China

Received date: 2022-04-13

  Online published: 2022-09-02

摘要

查明煤层气开发区的水文地质条件及其控气作用能为进一步开发井位部署提供依据。以寿阳地区松塔区块的15号煤层为研究对象,对11口煤层气井的产出水进行常规离子测试,得出了产出水的矿化度、离子分布特征;参考苏林分类法划分了产出水的类型;根据煤层气井排采初期的动液面高度,结合煤层底板标高,计算出各口煤层气井的等折算水位;在此基础上划分出滞流区、弱径流区和径流区。从水化学和水动力角度,分析了水文地质条件对15号煤层含气量的控制作用。结果表明:研究区水质类型主要为NaHCO3型和CaCl2型;自北向南可分为径流区、弱径流区和滞流区;当钠氯系数小于1.04,脱硫系数小于0.12,碳酸盐平衡系数小于10.39时,煤层气含气量大于12 m3/t,为煤层气的富集区;水动力封闭型、水动力封堵型的地下水动力条件有利于煤层气的富集;水动力逸散型则导致煤层气含气量降低。该研究结果为研究区煤层气富集区优选及勘探开发提供了参考。

本文引用格式

王文升 , 张亚飞 , 杜丰丰 , 韩冬 , 倪小明 . 寿阳地区15号煤层地下水动力场特征及控气作用[J]. 油气藏评价与开发, 2022 , 12(4) : 643 -650 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.04.012

Abstract

Finding out the hydrogeological conditions and it’s controlling gas effects of CBM(coalbed methane) development area is important, which can provide a foundation for further development well location deployment. Taking the No.15 coal seam of Songta Block in Shouyang area as a research object, the conventional ion of the produced water in 11 coalbed methane wells has been tested, and the mineralization and ion distribution characteristics of the produced water are obtained. According to the Sulin classification, the types of produced water are divided. And according to the dynamic liquid level height at the initial stage of drainage of coalbed methane wells and combined with the elevation of coalbed floor, the equivalent water level of each coalbed methane well is calculated. On this basis, the hydrodynamic field in studying area are divided into stagnant area, weak runoff area and runoff area. Meanwhile, the controlling gas effects of hydrogeological parameters on gas content of No.15 coal seam are analyzed from the aspects of perspective of hydrochemistry and hydrodynamics. The results show that the main types of water quality in the studying area are NaHCO3 and CaCl2. The runoff area, weak runoff area and stagnant area are successively distributed from north to south. For some areas, when the sodium chloride coefficient is less than 1.04, the desulfation coefficient is less than 0.12, and the carbonate balance coefficient is less than 10.39, the gas content is more than 12 m3/t. These areas are beneficiation areas in coalbed methane. The hydrodynamic conditions of hydrodynamic sealing type and hydrodynamic plugging type are conducive to the enrichment of coalbed methane. The hydraulic escape type leads to the decrease of coalbed methane gas content. The research results provide a reference for the optimization, exploration and development of CBM enrichment areas in the study area.

参考文献

[1] 徐锐, 汤达祯, 陶树, 等. 沁水盆地安泽区块煤层气藏水文地质特征及其控气作用[J]. 天然气工业, 2016, 36(2):36-44.
[1] XU Rui, TANG Dazhen, TAO Shu, et al. Hydrogeological characteristics of CBM reservoirs and their controlling effects in Block Anze, Qinshui Basin[J]. Natural Gas Industry, 2016, 36(2): 36-44.
[2] 杨兆彪, 吴丛丛, 张争光, 等. 煤层气产出水的地球化学意义——以贵州松河区块开发试验井为例[J]. 中国矿业大学学报, 2017, 46(4):830-837.
[2] YANG Zhaobiao, WU Congcong, ZHANG Zhengguang, et al. Geochemical significance of CBM Produce water: A case study of developed test wells in Songhe block of Guizhou Province[J]. Journal of China University of Mining & Technology, 2017, 46(4): 830-837.
[3] 秦勇, 张政, 白建平, 等. 沁水盆地南部煤层气井产出水源解析及合层排采可行性判识[J]. 煤炭学报, 2014, 39(9):1892-1898.
[3] QIN Yong, ZHANG Zheng, BAI Jianping, et al. Source apportionment of produced-water and feasibility discrimination of commingling CBM production from wells in Southern Qinshui Basin[J]. Journal of China Coal Society, 2014, 39(9): 1892-1898.
[4] 张松航, 唐书恒, 李忠城, 等. 煤层气井产出水化学特征及变化规律——以沁水盆地柿庄南区块为例[J]. 中国矿业大学学报, 2015, 44(2):292-299.
[4] ZHANG Songhang, TANG Shuheng, LI Zhongcheng, et al. The Hydrochemical characterics and changes of the produced water: Taking Shizhuangnan block, South of the Qinshui basin as an example[J]. Journal of China University of Mining & Technology, 2015, 44(2): 292-299.
[5] 刘玲, 陈坚, 牛浩博, 等. 基于FEFLOW的三维土壤—地下水耦合铬污染数值模拟研究[J]. 水文地质工程地质, 2022, 49(1): 164- 174.
[5] LIU Ling, CHEN Jian, NIU Haobo, et al. Numerical simulation of three-dimensional soil-groundwater coupled chromium contamination based on FEFLOW[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 164-174.
[6] 李凡, 李家科, 马越, 等. 地下水数值模拟研究与应用进展[J]. 水资源与水工程学报, 2018, 29(1):99-104.
[6] LI Fan, LI Jiake, MA Yue, et al. The research and application progress of numerical simulation on groundwater[J]. Journal of Water Resources & Water Engineering, 2018, 29(1): 99-104.
[7] 罗杰, 王文科, 段磊, 等. 银川平原地下水位变化特征及其成因分析[J]. 西北地质, 2020, 53(1):195-204.
[7] LUO Jie, WANG Wenke, DUAN Lei, et al. Dynamic analysis of groundwater level in Yinchuan Plain[J]. Northwestern Geology, 2020, 53(1): 195-204.
[8] 苏林B A. 天然气水系中的油田水[M]. 北京: 石油工业出版社, 1956.
[8] Сулин Б А. Oilfield water in natural water systems[M]. Beijing: Petroleum Industry Press, 1956.
[9] 国家能源局. 油田水分析方法:SY/T 5523—2016[S]. 北京: 中国标准出版社, 2016.
[9] National Energy Administration. Method for analysis of water: SY/T 5523—2016[S]. Beijing: Standards Press of China, 2016.
[10] 高玉巧, 李鑫, 何希鹏, 等. 延川南深部煤层气高产主控地质因素研究[J]. 煤田地质与勘探, 2021, 49(2):21-27.
[10] GAO Yuqiao, LI Xin, HE Xipeng, et al. Study on the main controlling geological factors of high yield deep CBM in Southern Yanchuan Block[J]. Coal Geology & Exploration, 2021, 49(2): 21-27.
[11] 朱亚茹, 孙蓓蕾, 曾凡桂, 等. 西山煤田古交矿区煤层气藏水文地质特征及其控气作用[J]. 煤炭学报, 2018, 43(3):759-769.
[11] ZHU Yaru, SUN Beilei, ZENG Fangui, et al. Hydrogeological characteristics of CBM reservoirs and their controlling effects in Gujiao Mining Area, Xishan Coalfield[J]. Journal of China Coal Society, 2018, 43(3): 759-769.
[12] 赵丹, 蔡长宏, 安珏东, 等. 页岩中基于孔隙度和有机碳含量的甲烷吸附量计算[J]. 石油与天然气化工, 2021, 50(2):88-92.
[12] ZHAO Dan, CAI Changhong, AN Juedong, et al. Calculation of methane adsorption in shale based on porosity and organic carbon content[J]. Chemical Engineering of Oil & Gas, 2021, 50(2): 88-92.
[13] 李雯霞, 张西营, 苗卫良, 等. 柴达木盆地北缘冷湖三号构造油田水水化学特征[J]. 盐湖研究, 2016, 24(2):12-18.
[13] LI Wenxia, ZHANG Xiying, MIAO Weiliang, et al. Hydrochemical characteristics of oilfield waters in Lenghu No.3 structure area of north edge of Qaidam Basin[J]. Journal of Salt Lake Research, 2016, 24(2): 12-18.
[14] 张治波, 刘腾, 李丽荣, 等. 鄂尔多斯盆地CD区块长6地层水化学性质及其地质意义[J]. 矿物岩石, 2017, 37(3):61-68.
[14] ZHANG Zhibo, LIU Teng, LI Lirong, et al. Chemical characteristics and geological significance of Chang 6 formation water in CD Area of Ordos Basin[J]. Mineralogy and Petrology, 2017, 37(3): 61-68.
[15] ARUMUGAM K, KUMAR A R, ELANGOVAN K. Evolution of hydro chemical parameters and quality assessment of groundwater in Tirupur region, Tamil Nadu, India[J]. International Journal of Environmental Research, 2015, 9(3): 1023-1036.
[16] 李剑, 王勃, 邵龙义, 等. 水文地质分区及其控气作用———以鄂东气田保德区块为例[J]. 中国矿业大学学报, 2017, 46(4):869-876.
[16] LI Jian, WANG Bo, SHAO Longyi, et al. Hydrogeological zoning and its gas-controlling mechanism: A case study of Baode block, eastern Ordos gas field[J]. Journal of China University of Mining & Technology, 2017, 46(4): 869-876.
[17] 宋岩, 李卓, 姜振学, 等. 非常规油气地质研究进展与发展趋势[J]. 石油勘探与开发, 2017, 44(4):638-648.
[17] SONG Yan, LI Zhuo, JIANG Zhenxue, et al. Progress and development trend of unconventional oil and gas geological research[J]. Petroleum Exploration and Development, 2017, 44(4): 638-648.
[18] 原俊红, 付玉通, 蔡念. 延川南水文地质控气作用研究[J]. 地质科技情报, 2018, 37(6):239-244.
[18] YUAN Junhong, FU Yutong, CAI Nian. Function of hydrogeology on coalbed methane in Yanchuannan[J]. Geological Science and Technology Information, 2018, 37(6): 239-244.
[19] TAO S, TANG D Z, XU H, et al. Factors controlling high-yield coalbed methane vertical wells in the Fanzhuang block,southern Qinshui basin[J]. International Journal of Coal Geology, 2014, 134-135: 38-45.
[20] 刘大锰, 王颖晋, 蔡益栋. 低阶煤层气富集主控地质因素与成藏模式分析[J]. 煤炭科学技术, 2018, 46(6):1-8.
[20] LIU Dameng, WANG Yinjin, CAI Yidong. Analysis of main geological controls on coalbed methane enrichment and accumulation patterns in low rank coals[J]. Coal Science and Technology, 2018, 46(6): 1-8.
文章导航

/