油气藏评价与开发 >
2022 , Vol. 12 >Issue 4: 657 - 665
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2022.04.014
煤层气双层合采直井产能预测及排采试验——以沁水盆地郑庄西南部为例
收稿日期: 2022-04-20
网络出版日期: 2022-09-02
基金资助
国家自然科学基金项目“基于高阶煤储层全尺度结构网络重构的气-水赋存运移机理研究”(41972168);中国石油重大科技专项“煤层气藏生产规律与技术政策研究”(2017E-1405)
Prediction of productivity and co-drainage trial of bilayer vertical coalbed methane wells: Cases study of the southwest of Zhengzhuang Block, Qinshui Basin
Received date: 2022-04-20
Online published: 2022-09-02
双层或多层合采是提高煤层气单井产量的重要途径。为了提高沁水盆地南部郑庄区块合采井排采效率,基于郑庄西南部现场排采数据和排采试验结果,分别提出了通过动液面降至15号煤后产量变化趋势实时判断15号煤产气能力和通过地质工程关键参数、解吸初期排采参数预测15号煤产气能力方法,同时提出了“变速排采、控压放气、高压快提、高压稳产”的双层合采井排采管控方法并在沁水盆地郑庄西南部开展了现场试验。结果表明:动液面降至15号煤后如果产量持续上升,则15号煤产气效果较好;如果产气量趋于平稳,则表明15号煤产气量较低;15号煤深测向电阻率小于1 000 Ω·m,或施工压力相对较低的井产气能力差;利用煤层气井见套压后15号煤层底的流体压力与套压数据预测各层产气能力的方法,预测结果精确度较高;新排采方法效果较好,20口试验井平均达产周期由180 d下降至140 d,缩短了22.2 %,平均单层产量由1 000 m3升至1 200 m3,提高了20 %。但试验井井间开发效果差异大,产气能力强的井稳产气量高、稳产时间长。产能预测方法和排采方法对双层合采井充分释放单井产能具有借鉴意义。
贾慧敏 , 胡秋嘉 , 张聪 , 张文胜 , 刘春春 , 毛崇昊 , 王岩 . 煤层气双层合采直井产能预测及排采试验——以沁水盆地郑庄西南部为例[J]. 油气藏评价与开发, 2022 , 12(4) : 657 -665 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.04.014
The bilayer or multilayer co-drainage is an important approach to improve the single well production. In order to improve the drainage efficiency of bilayer drainage wells in Zhengzhuang Block of southern Qinshui Basin, the drainage data and co-drainage trial data from the southwest of Zhengzhuang Block are analyzed and the method is put forward to judge the gas production capacity of No.15 coal seam in real time by the change trend of coal production after the hydrodynamic level drops below No.15 coal seam. Two methods predicting the gas production capacity of each layer by key parameters of both geology and engineering or by early desorption drainage parameters are proposed. A new drainage method is put forth and the trial is carried out in the southeast of Qinshui Basin, that is the “variable rate drainage, gas released at certain casing pressure, high-production-rate and certain stable production kept at high pressure”. The results show that if the production continues to rise after the fluid level drops below the No.15 coal seam, the gas production capacity of No.15 coal seam is high. On the contrary, it indicates that gas production of No.15 coal seam is low. When the resistivity of No.15 coal seam is less than 1 000 Ω·m or the construction pressure is low, the gas production capacity is relatively low. The data of bottom-hole flowing pressure and casing pressure of No.15 coal seam after casing pressure come out in coalbed methane well can be used effectively to predict the gas production capacity of each layer, with high prediction accuracy. The application of the new drainage method, proposed by this paper, results in 22.2 % shorter of the production-increasing cycle decreasing from 180 d to 140 d and more than 20 % increase of the average single-layer production from 1 000 m3 to 1 200 m3, compared with the old drainage method. The great difference in the development performance among the 20 wells is affected mainly by the gas production capacity of each well. The wells with higher gas production capacity have higher stable gas production and longer stable gas production time. The productivity prediction method and the co-drainage method of bilayer vertical coalbed methane wells have great reference significance to the productivity releasing of co-drainage bilayer vertical coalbed methane wells.
[1] | 李勇, 许卫凯, 高计县, 等. “源-储-输导系统”联控煤系气富集成藏机制——以鄂尔多斯盆地东缘为例[J]. 煤炭学报, 2021, 46(8):2440-2453. |
[1] | LI Yong, XU Weikai, GAO Jixian, et al. Mechanism of coal measure gas accumulation under integrated control of “source reservoir-transport system”:A case study from east margin of Ordos Basin[J]. Journal of China Coal Society, 2021, 46(8): 2440-2453. |
[2] | 李勇, 王延斌, 孟尚志, 等. 煤系非常规天然气合采地质基础理论进展及展望[J]. 煤炭学报, 2020, 45(4):1406-1418. |
[2] | LI Yong, WANG Yanbin, MENG Shangzhi, et al. Theoretical basis and prospect of coal measure unconventional natural gas co-production[J]. Journal of China Coal Society, 2020, 45(4): 1406-1418. |
[3] | 姜杉钰, 康永尚, 杨通保, 等. 云南恩洪煤层气区块单井多煤层合采方式探讨[J]. 煤田地质与勘探, 2018, 46(2):80-89. |
[3] | JIANG Shanyu, KANG Yongshang, YANG Tongbao, et al. Combined CBM drainage of multiple seams by single well in Enhong Block,Yunnan Province[J]. Coal Geology & Exploration, 2018, 46(2): 80-89. |
[4] | 高玉巧, 郭涛, 何希鹏, 等. 贵州省织金地区煤层气多层合采层位优选[J]. 石油实验地质, 2021, 43(2):227-232. |
[4] | GAO Yuqiao, GUO Tao, HE Xipeng, et al. Optimization of multi-layer commingled coalbed methane production in Zhijin area, Guizhou province[J]. Petroleum Geology & Experiment, 2021, 43(2): 227-232. |
[5] | 孟艳军, 汤达祯, 许浩, 等. 煤层气开发中的层间矛盾问题——以柳林地区为例[J]. 煤田地质与勘探, 2013, 41(3):29-33. |
[5] | MENG Yanjun, TANG Dazhen, XU Hao, et al. Interlayer contradiction problem in coalbed methane development: A case study in Liulin area[J]. Coal Geology & Exploration, 2013, 41(3): 29-33, 37. |
[6] | 贾立, 彭守建, 许江, 等. 多层叠置含气系统煤层气合采储层流体动态响应特征[J]. 煤炭科学技术, 2021, 49(11):30-37. |
[6] | JIA Li, PENG Shoujian, XU Jiang, et al. Fluid dynamic response characteristics of CBM coproduction reservoir in MSGBS[J]. Coal Science and Technology, 2021, 49(11): 30-37. |
[7] | 张先敏, 吴浩宇, 冯其红, 等. 多层合采煤层气井动态响应特征[J]. 中国石油大学学报(自然科学版), 2020, 44(6):88-96. |
[7] | ZHANG Xianmin, WU Haoyu, FENG Qihong, et al. Dynamic characteristics of commingled coalbed methane production in wells with multi-layer coal seams[J]. Journal of China University of Petroleum(Edition of Natural Science), 2020, 44(6): 88-96. |
[8] | 许耀波. 基于解吸气成分体积分数差异的煤层气合采产层判识方法[J]. 煤炭学报, 2020, 45(S1):367-376. |
[8] | XU Yaobo. A method for identification of CBM co-production reservoir based on the volume fraction difference of desorption gas components[J]. Journal of China Coal Society, 2020, 45(S1): 367-376. |
[9] | 秦勇, 吴建光, 张争光, 等. 基于排采初期生产特征的煤层气合采地质条件分析[J]. 煤炭学报, 2020, 45(1):241-257. |
[9] | QIN Yong, WU Jianguang, ZHANG Zhengguang, et al. Analysis of geological conditions for coalbed methane co-production based on production characteristics in early stage of drainage[J]. Journal of China Coal Society, 2020, 45(1): 241-257. |
[10] | 黄红星, 聂志宏, 巢海燕, 等. 临汾区块深层煤层气井开发层系选择探讨[J]. 煤炭学报, 2018, 43(6):1627-1633. |
[10] | HUANG Hongxing, NIE Zhihong, CHAO Haiyan, et al. Discussion of the selection for producing layers of deep CBM wells in Linfen Block[J]. Journal of China Coal Society, 2018, 43(6): 1627-1633. |
[11] | 许江, 李奇贤, 彭守建, 等. 定产定压条件下叠置含气系统煤层气合采试验研究[J]. 煤炭学报, 2021, 46(8):2510-2523. |
[11] | XU Jiang, LI Qixian, PENG Shoujian, et al. Experimental study on CBM coproduction in superposed gas-bearing systems under constant gas production rate and constant wellbore pressure[J]. Journal of China Coal Society, 2021, 46(8): 2510-2523. |
[12] | 张政, 秦勇, 傅雪海. 沁南煤层气合层排采有利开发地质条件[J]. 中国矿业大学学报, 2014, 43(6):1019-1024. |
[12] | ZHANG Zheng, QIN Yong, FU Xuehai. The favorable developing geological conditions for CBM multi-layer drainage in southern Qinshui basin[J]. Journal of China University of Mining & Technology, 2014, 43(6): 1019-1024. |
[13] | 贾慧敏, 孙世轩, 毛崇昊, 等. 基于煤岩应力敏感性的煤层气井单相流产水规律研究[J]. 煤炭科学技术, 2017, 45(12):189-193. |
[13] | JIA Huimin, SUN Shixuan, MAO Chonghao, et al. Study on single-phase flow water production law of coalbed methane well based on coal and rock stress sensitivity[J]. Coal Science and Technology, 2017, 45(12): 189-193. |
[14] | 张雷, 郝帅, 张伟, 等. 中低煤阶煤层气储量复算及认识——以鄂尔多斯盆地东缘保德煤层气田为例[J]. 石油实验地质, 2020, 42(1):147-155. |
[14] | ZHANG Lei, HAO Shuai, ZHANG Wei, et al. Recalculation and understanding of middle and low rank coalbed methane reserves: A case study of Baode Coalbed Methane Field on the eastern edge of Ordos Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 147-155. |
[15] | 贾慧敏, 胡秋嘉, 祁空军, 等. 高阶煤煤层气直井低产原因分析及增产措施[J]. 煤田地质与勘探, 2019, 47(5):104-110. |
[15] | JIA Huimin, HU Qiujia, QI Kongjun, et al. Reasons of low yield and stimulation measures for vertical CBM wells in high-rank coal[J]. Coal Geology & Exploration, 2019, 47(5): 104-110. |
[16] | 贾慧敏, 胡秋嘉, 樊彬, 等. 沁水盆地郑庄区块北部煤层气直井低产原因及高效开发技术[J]. 煤田地质与勘探, 2021, 49(2):34-42. |
[16] | JIA Huimin, HU Qiujia, FAN Bin, et al. Causes for low CBM production of vertical wells and efficient development technology in northern Zhengzhuang Block in Qinshui Basin[J]. Coal Geology & Exploration, 2021, 49(2): 34-42. |
[17] | 陈跃, 汤达祯, 许浩, 等. 基于测井信息的韩城地区煤体结构的分布规律[J]. 煤炭学报, 2013, 38(8):1435-1442. |
[17] | CHEN Yue, TANG Dazhen, XU Hao, et al. The distribution of coal structure in Hancheng based on well logging data[J]. Journal of China Coal Society, 2013, 38(8): 1435-1442. |
[18] | 陶传奇, 王延斌, 倪小明, 等. 基于测井参数的煤体结构预测模型及空间展布规律[J]. 煤炭科学技术, 2017, 45(2):173-177. |
[18] | TAO Chuanqi, WANG Yanbin, NI Xiaoming, et al. Prediction model of coal-body structure and spatial distribution law based on logging parameters[J]. Coal Science and Technology, 2017, 45(2): 173-177. |
[19] | 胡秋嘉, 贾敏慧, 祁空军, 等. 高煤阶煤层气井单相流段流压精细控制方法——以沁水盆地樊庄—郑庄区块为例[J]. 天然气工业, 2018, 38(9):76-81. |
[19] | HU Qiujia, JIA Huimin, QI Kongjun, et al. A fine control method of flowing pressure in single-phase flow section of high-rank CBM gas development wells: A case study from the Fanzhuang-Zhengzhuang Block in the Qinshui Basin[J]. Natural Gas Industry, 2018, 38(9): 76-81. |
[20] | 杨延辉, 陈彦君, 郭希波, 等. 沁水盆地南部高煤阶煤岩渗透率压敏效应分析[J]. 煤炭科学技术, 2015, 43(12):152-156. |
[20] | YANG Yanhui, CHEN Yanjun, GUO Xibo, et al. Analysis on effect of stress sensitivity on permeability of high-rank coal in southern Qinshui basin[J]. Coal Science and Technology, 2015, 43(12): 152-156. |
[21] | 周宇. 二甲醚掺混低发热量煤层气混合气体的互换性研究[J]. 石油与天然气化工, 2021, 50(1):58-65. |
[21] | ZHOU Yu. Study on the interchangeability for mixtures of dimethyl ether and low calorific value coalbed methane[J]. Chemical Engineering of Oil & Gas, 2021, 50(1): 58-65. |
[22] | 朱峰, 郭智栋, 陈世波, 等. 煤层气连续管排液采气一体化工艺研究与应用[J]. 石油机械, 2021, 49(1):118-123. |
[22] | ZHU Feng, GUO Zhidong, CHEN Shibo, et al. Research and application of the integrated technology of liquid drainage and CBM production by coiled tubing[J]. China Petroleum Machinery, 2021, 49(1): 118-123. |
/
〈 | 〉 |