综合研究

驱油用聚合物溶液的流变模型应用优化研究

  • 朱诗杰 ,
  • 叶仲斌 ,
  • 施雷庭 ,
  • 宋瑞 ,
  • 徐建根 ,
  • 刘哲知
展开
  • 1.重庆科技学院石油与天然气工程学院,重庆 401331
    2.成都工业学院,四川 成都 611730
    3.西南石油大学油气藏地质与开发工程国家重点实验室,四川 成都 610500
    4.中海油能源发展股份有限公司工程技术分公司,天津 300452
朱诗杰(1989—),男,博士,讲师,从事化学驱提高采收率、多孔介质渗流、调剖堵水等方向的研究。地址:重庆市高新区大学城东路20号重庆科技学院,邮政编码:401331。E-mail: zhusj@cqust.edu.cn

收稿日期: 2021-04-29

  网络出版日期: 2022-09-02

基金资助

重庆市基础研究与前沿探索项目“黏弹性流体动态吸附量与滞留量的量化界定及数学模型表征研究”(cstc2021jcyj-msxmX0522);重庆市基础研究与前沿探索项目“页岩气地层水基钻井液专用热致形状记忆智能封堵剂研制及作用机理”(cstc2020jcyj-msxmX0163);重庆市教育委员会科学技术研究项目“封堵与抑制协同作用的微纳米页岩稳定剂制备及其作用机理”(KJQN202001518)

Application and optimization of rheological model of polymer solution for oil displacement

  • Shijie ZHU ,
  • Zhongbin YE ,
  • Leiting SHI ,
  • Rui SONG ,
  • Jiangen XU ,
  • Zhezhi LIU
Expand
  • 1. Chongqing University of Science & Technology, Chongqing 401331, China
    2. Chengdu Technological University, Chengdu, Sichuan 611730, China
    3. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    4. CNOOC EnerTech-Drilling & Production Co., Tianjin 300452, China

Received date: 2021-04-29

  Online published: 2022-09-02

摘要

流变测试手段的进步推进了研究人员在较广的测试区间内对黏弹性流体的认识。驱油用聚合物溶液呈现“三段式”的流变曲线特征(零剪切段、剪切变稀、极限剪切段),极其需要一个更为准确的描述模型和限定条件。以部分水解聚丙烯酰胺和疏水缔合聚合物为研究对象,通过分析较广范围(0.01~10 000 s-1)的流变曲线,结合黏弹性模量变化进行研究。结果表明:在实验条件下,两种聚合物的流变曲线可以用Carreau流变模型进行描述;疏水缔合作用形成的结构黏度,大幅度增强了溶液的弹性作用,使聚合物溶液AP-P4的弹性模量占据主导。考虑弹性特征对流变曲线的影响,应用小幅振荡实验数据推导的松弛时间谱,限制特征松弛时间(λ)的取值范围,最后通过Carreau流变模型的非线性回归拟合曲线高度匹配了实验数据。研究黏弹性溶液流变本构方程时,需充分考虑溶液特性,搭建不同测试参数间的相互关系,建立合理的限制条件,是优化和改进黏弹性流体流变本构方程的有效手段。

本文引用格式

朱诗杰 , 叶仲斌 , 施雷庭 , 宋瑞 , 徐建根 , 刘哲知 . 驱油用聚合物溶液的流变模型应用优化研究[J]. 油气藏评价与开发, 2022 , 12(4) : 677 -683 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.04.016

Abstract

The progress of rheological testing methods has promoted the researchers' understanding of viscoelastic fluids in a wider testing range. The polymer solution used for oil displacement has the characteristics of “Three-stage” rheological curve (zero shear section, shear thinning section, and ultimate shear section), so a more accurate description model and limiting conditions are extremely needed. Taking partially hydrolyzed polyacrylamide and hydrophobically associating polymer as the research objects, the rheological curves in a wide range (0.01 ~ 10 000 s-1) have been analyzed, and the changes of viscoelastic modulus have been studied. The results show that under the experimental conditions, the rheological curves of the two polymers can be described by Carreau rheological model. The structural viscosity formed by hydrophobic association greatly enhances the elasticity of the solution, and makes the elastic modulus of the polymer P-P4 dominant. Considering the influence of elastic characteristics on the rheological curve, the relaxation time spectrum derived from the experimental data of small amplitude oscillation is used to limit the characteristic relaxation time(λ). Finally, the experimental data are highly matched by the nonlinear regression fitting curve of Carreau rheological model. When studying the rheological constitutive equation of viscoelastic solution, it is necessary to fully consider the solution characteristics, establish the relationship between different test parameters, and establish reasonable limiting conditions, which are effective means to optimize and improve the rheological constitutive equation of viscoelastic fluid.

参考文献

[1] 周持兴. 聚合物流变实验与应用[M]. 上海: 上海交通大学出版社, 2003.
[1] ZHOU Chixing. Polymer rheological experiment and application[M]. Shanghai: Shanghai Jiao Tong University Press, 2003.
[2] 冯茹森, 郭拥军, 吕鑫, 等. 疏水缔合聚合物流变学测量方法Ⅱ:零剪切黏度[J]. 石油钻采工艺, 2011, 33(4):55-58.
[2] FENG Rusen, GUO Yongjun, LYU Xin, et al. Study on the rheological testing method of water soluble hydrophobically associating polymers Ⅱ: Zero-shear viscosity[J]. Oil Drilling & Production Technology, 2011, 33(4): 55-58.
[3] SERIGHT R S, FAN T G. New insights into polymer rheology in porous media[J]. SPE Journal, 2011, 16(1): 35-42.
[4] JOUENNE S, CHAKIBI H, LEVITT D. Polymer stability after successive mechanical-degradation events[J]. SPE Journal, 2018, 23(1): 18-33.
[5] 孙全力, 王爱蓉, 张军, 等. 疏水缔合聚合物APP4流变性能实验研究[J]. 成都理工大学学报(自然科学版), 2012, 53(1):104-106.
[5] SUN Quanli, WANG Airong, ZHANG Jun, et al. Rheological properties of hydrophobically associative polymer APP4[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2012, 53(1): 104-106.
[6] 舒政, 齐勇, 程飞豹, 等. 海上油田聚合物超重力速溶技术研究[J]. 油气地质与采收率, 2021, 28(3):142-146.
[6] SHU Zheng, QI Yong, CHENG Feibao, et al. Research on high-gravity instant dissolving technology of polymers in offshore oilfields[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(3): 142-146.
[7] 冯茹森. 疏水缔合聚合物分子结构与溶液结构及流变特性的关系研究[D]. 成都: 西南石油大学, 2008.
[7] FENG Rusen. Relationship between molecular structure and solution structure and rheological properties of hydrophobically associating polymers[D]. Chengdu: Southwest Petroleum University, 2008.
[8] 吴其晔, 巫静安. 高分子材料流变学[M]. 北京: 高等教育出版社, 2002.
[8] WU Qiye, WU Jing'an. Rheology of polymer materials[M]. Beijing: Higher Education Press, 2002.
[9] 康万利, 王芳, 杨红斌, 等. 两亲聚合物设计合成及其增效体系研究(Ⅷ)——剪切降解与恢复特性[J]. 日用化学工业, 2020, 50(8):516-522.
[9] KANG Wanli, WANG Fang, YANG Hongbin, et al. Study on the design and synthesis of amphiphilic polymers and their synergistic systems(Ⅷ): Shear degradation and recovery characteristics[J]. China Surfactant Detergent & Cosmetics Chemical Industry, 2020, 50(8): 516-522.
[10] 谭鑫. 岩心中聚合物溶液性质变化的影响因素及规律[D]. 北京: 中国石油大学(北京), 2017.
[10] TAN Xin. Influencing factors and laws of polymer solution properties in core[D]. Beijing: China University of Petroleum(Beijing), 2017.
[11] 孟令伟, 康万利, 张磊, 等. 两亲聚合物溶液的流变规律及影响因素[J]. 高分子材料科学与工程, 2012, 28(10):55-58.
[11] MENG Lingwei, KANG Wanli, ZHANG Lei, et al. Rheological rules and influencing factors of amphiphilic polymer solution[J]. Polymer Materials Science and Engineering, 2012, 28(10): 55-58.
[12] 孙刚, 李长庆, 张新民, 等. 十二烷基苯磺酸钠对疏水缔合聚合物溶液流变性的影响[J]. 大庆石油地质与开发, 2012, 31(5):132-136.
[12] SUN Gang, LI Changqing, ZHANG Xinmin, et al. Effect of sodium dodecylbenzene sulfonate on rheology of hydrophobically associating polymer solution[J]. Petroleum Geology & Oilfield Development in Daqing, 2012, 31(5): 132-136.
[13] 吴淑云. 驱油用聚合物溶液黏弹性评价方法研究[J]. 长江大学学报(自科版), 2013, 10(32):140-142.
[13] WU Shuyun. Evaluation methods of properties of polymer solutions used for EOR[J]. Journal of Yangtze University(Natural Science Edition), 2013, 10(32): 140-142.
[14] 孟令伟, 康万利, 张磊, 等. 两亲聚合物溶液的流变规律及影响因素[J]. 高分子材料科学与工程, 2012, 28(10):55-58.
[14] MENG Lingwei, KANG Wanli, ZHANG Lei, et al. Rheological rules and influencing factors of amphiphilic polymer solution[J]. Polymer Materials Science and Engineering, 2012, 28(10): 55-58.
[15] SHI L T, ZHU S J, YE Z B, et al. The seepage flow characteristics of hydrophobically associated polymers with different aggregation behaviours in porous media[J]. Royal Society Open Science, 2020, 7(1): 191270.
[16] SHI L T, ZHU S J, YE Z B, et al. Effect of microscopic aggregation behavior on polymer shear resistance[J]. Journal of Applied Polymer Science, 2020, 137(19): 48670.
[17] 施雷庭, 朱诗杰, 薛新生, 等. 不同聚集行为的聚合物耐盐性能评价研究[J]. 精细石油化工, 2019, 36(6):80-84.
[17] SHI Leiting, ZHU Shijie, XUE Xinsheng, et al. Evaluation of salt tolerance of polymers with different aggregation behaviors[J]. Speciality Petrochemicals, 2019, 36(6): 80-84.
[18] 叶仲斌, 杨梅, 施雷庭, 等. 疏水缔合聚合物APP5的性能研究[J]. 应用化工, 2018, 47(6):1150-1153.
[18] YE Zhongbin, YANG Mei, SHI Leiting, et al. Study on the properties of hydrophobic associative polymer[J]. Applied Chemical Industry, 2018, 47(6): 1150-1153.
[19] LANG C. Regularization methods for finding the relaxation time spectra of linear polydisperse polymer melts[J]. Rheologica Acta, 2018, 57(4): 339-347.
[20] 王立军. 聚合物溶液黏弹性对提高驱油效率的作用[D]. 大庆: 大庆石油学院, 2003.
[20] WANG Lijun. The action that viscoelasticity of polymer solution on enhancing oil displacement efficiency[D]. Daqing: Daqing Petroleum Institute, 2003.
[21] 孙玉学. 黏弹性聚合物溶液提高驱油效率的机理研究[D]. 大庆: 大庆石油学院, 2009.
[21] SUN Yuxue. The research on the mechanism of oil displacement efficiency by polymer flooding with viscoelasticity[D]. Daqing: Daqing Petroleum Institute, 2009.
[22] 秦青, 张敏革, 林兴华, 等. 部分水解聚丙烯酰胺溶液的黏弹性数学模型及其松弛时间谱的研究[J]. 石油化工, 2015, 44(1):64-69.
[22] QIN Qing, ZHANG Minge, LIN Xinghua, et al. Viscoelasticity model and relaxation time spectrum of partially hydrolyzed polyacrylamide solution[J]. Petrochemical Technology, 2015, 44(1): 64-69.
[23] 曹宝格, 罗平亚. 缔合聚合物溶液在多孔介质中的流变性实验[J]. 石油学报, 2011, 32(4):652-657.
[23] CAO Baoge, LUO Pingya. An experimental study on rheological properties of the associating polymer solution in porous medium[J]. Acta Petrolei Sinica, 2011, 32(4): 652-657.
[24] 朱诗杰, 施雷庭, 王晓, 等. 聚集行为对聚合物溶液性能的影响研究[J]. 应用化工, 2020, 49(3):597-601.
[24] ZHU Shijie, SHI Leiting, WANG Xiao, et al. Study on the effect of aggregation behavior on the properties of polymer solutions[J]. Applied Chemical Industry, 2020, 49(3): 597-601.
文章导航

/