油气藏评价与开发 >
2022 , Vol. 12 >Issue 4: 698 - 702
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2022.04.019
致密低渗底水气藏控水二次加砂压裂技术研究与应用
收稿日期: 2021-12-17
网络出版日期: 2022-09-02
基金资助
中国石化科技项目“鄂北致密砂岩气藏有效开发及提高采收率技术”(P20065)
Research and application of water-control secondary sanding fracturing technology in tight low permeability bottom water gas reservoir
Received date: 2021-12-17
Online published: 2022-09-02
针对东胜气田盒1段底水气藏压裂裂缝易沟通下部水层,导致底水快速锥进,水淹气井后无产能,有效建产难度大的技术瓶颈。将遇水固结型支撑剂和二次加砂压裂技术结合应用,在压裂缝底部形成人工遮挡层,在控制裂缝高度的同时有效阻挡气水界面上升,提高气水渗透率比率,降低裂缝内水流阻力,延缓气井见水周期,实现致密低渗底水气藏经济有效开发。控水二次加砂压裂技术东胜气田盒1段底水气藏累计试验应用10口井,施工有效率达90 %,相比邻井常规压裂工艺产气量提高60 %,液气比降低31.7 %,其中JP58-A井测试无阻流量达20.4×104 m3/d,在实现压裂增产的同时取得较好控水效果。
徐兵威 , 王世彬 , 刘城成 . 致密低渗底水气藏控水二次加砂压裂技术研究与应用[J]. 油气藏评价与开发, 2022 , 12(4) : 698 -702 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.04.019
He-1 reservoir of Dongsheng Gas Field is a bottom water gas reservoir. Fractures are easy to communicate with the bottom water layer, resulting in rapid bottom water coning and there is no productivity after water flooding of gas wells. It is difficult to get effective production. Combined the research and development of water-consolidated proppant with the secondary sanding and high-pressure fracture control technology, the artificial shelter layer is formed at the bottom of the fracture, which effectively prevents the rise of gas-water interface while controlling the fracture height, improves the gas-water permeability ratio, reduces the flow resistance in the fracture, delays the water breakthrough cycle of gas wells, and realizes the economic and effective development of tight low permeability bottom water gas reservoirs. The water-contorl secondary sanding fracturing technology has been applied in ten wells of the bottom water gas reservoir in He-1 Member of Dongsheng Gas Field. The construction efficiency is 90 %. Compared with the adjacent wells fractured by the conventional means, the water production of the application wells is increased by 60 %, the liquid-gas ratio is decreased by 31.7 %, and the measured open flow capacity of Well-JP58-A is 20.4×104 m3/d, which has achieved good water control effect while increase fracturing production.
[1] | 何发岐, 王付斌, 张威, 等. 鄂尔多斯盆地北缘勘探思路转变与天然气领域重大突破[J]. 中国石油勘探, 2020, 25(6):39-49. |
[1] | HE Faqi, WANG Fubin, ZHANG Wei, et al. Transformation of exploration ideas and major breakthrough in natural gas discovery in the northern margin of the Ordos Basin[J]. China Petroleum Exploration, 2020, 25(6): 39-49. |
[2] | 李良, 张威, 齐荣, 等. 连续成藏与非连续成藏过渡带上的气藏分布特征—以鄂尔多斯盆地北部东胜气田为例[M]. 北京: 石油工业出版社, 2021. |
[2] | LI Liang, ZHANG Wei, QI Rong, et al. Distribution characteristics of gas reservoirs in transition zones of continuous and discontinuous accumulations: A case study of Dongsheng gas field in northern Ordos Basin[M]. Beijing: Petroleum Industry Press, 2021. |
[3] | 王周红, 王东辉. 东胜气田储层特征研究[J]. 天然气技术与经济, 2014, 8(5):9-12. |
[3] | WANG Zhouhong, WANG Donghui. Reservoir characteristics in Dongsheng Gasfield, Ordos Basin[J]. Natural Gas Technology and Economy, 2014, 8(5): 9-12. |
[4] | 袁勇. 东胜气田锦58井区盒1沉积相描述及储层分类评价[J]. 中国石油石化, 2017,(9):32-33. |
[4] | YUAN Yong. Sedimentary facies description and reservoir classification evaluation of He1 in Jin 58 well block of Dongsheng gas field[J]. China Petrochem, 2017, (9): 32-33. |
[5] | 才博, 邱晓惠, 王欣, 等. 利用分层与控水压裂一体化工艺提高剩余油动用程度研究[J]. 油气井测试, 2013, 22(1):61-64. |
[5] | CAI Bo, QIU Xiaohui, WANG Xin, et al. Study on separate layer fracturing integrated with water control technology in low porosity and low permeability multilayer reservoir[J]. Well Testing, 2013, 22(1): 61-64. |
[6] | 何平, 石强, 李达, 等. 苏里格气田西区控水压裂技术研究及应用[J]. 石油化工应用, 2013, 32(3):20-23. |
[6] | HE Ping, SHI Qiang, LI Da, et al. Research and application of water control fracturing technology in Sue's west gas field[J]. Petrochemical Industry Application, 2013, 32(3): 20-23. |
[7] | 郝桂宪. 不动管柱水力喷射控水压裂探索与实践[J]. 化工管理, 2017,(21):215. |
[7] | HAO Guixian. Exploration and practice of hydraulic jet control hydraulic fracturing with unfixed column[J]. Chemical Enterprise Management, 2017, (21): 215. |
[8] | 赵俊, 杨生文, 孙泽宁, 等. 苏里格深部煤系致密气储层绒囊流体控水压裂[J]. 石油钻采工艺, 2020, 42(5):647-651. |
[8] | ZHAO Jun, YANG Shengwen, SUN Zening, et al. Applying fuzzy-ball fluid to the water control fracturing in deepcoal-measure tight gas reservoirs in Sulige[J]. Oil Drilling & Production Technology, 2020, 42(5): 647-651. |
[9] | 晁圣棋, 邹明华, 张艳辉, 等. 水平井机械化学复合控水工艺现场试验研究[J]. 石油矿场机械, 2021, 50(6):21-26. |
[9] | CHAO Shengqi, ZOU Minghua, ZHANG Yanhui, et al. Field research on combination water control technology of horizontal well[J]. Oil Field Equipment, 2021, 50(6): 21-26. |
[10] | 田绪安, 杨程, 李宇, 等. 临兴气田产水机理及控水对策研究[J]. 山东化工, 2021, 50(23):123-124. |
[10] | TIAN Xu'an, YANG Cheng, LI Yu, et al. Study on water production mechanism and water control countermeasures of Linxing Gas Field[J]. Shandong Chemical Industry, 2021, 50(23): 125-126. |
[11] | 郝晨西, 杜志栋, 张嵩. 致密砂岩气藏控水压裂工艺效果分析及应用[J]. 辽宁化工, 2021, 50(10):1548-1550. |
[11] | HAO Chenxi, DU Zhidong, ZHANG Song. Effect Analysis and Application of Water Control Fracturing Technology in Tight Sandstone Gas Reservoirs[J]. Liaoning Chemical Industry, 2021, 50(10): 1548-1550. |
[12] | 冯兴武. 双河油田高含水开发后期薄互层控水压裂技术研究[J]. 石油地质与工程, 2019, 33(5):107-111. |
[12] | FENG Xingwu. Thin interlayer-controlled water fracturing technology in the late stage of high water-cut development of Shuanghe oilfield[J]. Petroleum Geology and Engineering, 2019, 33(5): 107-111. |
[13] | 谷文彬, 裴玉彬, 赵安军, 等. 人工隔层技术在控缝高压裂井中的应用[J]. 石油钻采工艺, 2017, 39(5):646-651. |
[13] | GU Wenbin, PEI Yubin, ZHAO Anjun, et al. Application of artificial barrier technology to fracture height control in fracturing wells[J]. Oil Drilling & Production Technology, 2017, 39(5): 646-651. |
[14] | 瞿霜. TN气田水侵特征与控水稳气技术研究[D]. 成都: 西南石油大学, 2019. |
[14] | QU Shuang. Study on water invasion characteristics and water control and gas stabilization technology of TN gas field[D]. Chengdu: Southwest Petroleum University, 2020. |
[15] | 申贝贝, 何青, 陈付虎, 等. 东胜气田压裂施工排量优化研究[J]. 油气藏评价与开发, 2014, 4(2):50-54. |
[15] | SHEN Beibei, HE Qing, CHEN Fuhu, et al. Research on construction displacement optimization by fracturing in Dongsheng gas field[J]. Reservoir Evaluation and Development, 2014, 4(2): 50-54. |
[16] | 刘力铭, 郭建春, 卢聪, 等. 二次加砂压裂技术在樊131区块樊134-1井的应用[J]. 油气地质与采收率, 2014, 21(1):107-110. |
[16] | LIU Liming, GUO Jianchun, LU Cong, et al. Application for secondary sand fracturing technology in well Fan134-1, Fan131 block[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(1): 107-110. |
[17] | 王宇宾, 刘建伟. 二次加砂压裂技术研究与实践[J]. 石油钻采工艺, 2005, 27(5):81-84. |
[17] | WANG Yubin, LIU Jianwei. Research and practice of secondary sand fracturing technology[J]. Oil Drilling & Production Technology, 2005, 27(5): 81-84. |
[18] | 张兴国, 田世澄, 陈丛林, 等. 人工夹层的抑制水锥作用的研究[J]. 现代地质, 2002, 16(1):83-87. |
[18] | ZHANG Xingguo, TIAN Shicheng, CHEN Conglin, et al. Function of man-made barrier on bottom-water coning[J]. Geoscience, 2002, 16(1): 83-87. |
[19] | 范凤英, 韩炜, 郭东华, 等. 化学凝胶隔板阻断底水锥进矿场试验[J]. 钻采工艺, 2003, 26(4):86-88. |
[19] | FAN Fengying, HAN Wei, GUO Donghua, et al. Field test of shutting off bottom water coning by chemical gel plate[J]. Drilling & Production Technology, 2003, 26(4): 86-88. |
[20] | 杨科峰, 马新仿, 张士诚, 等. 凝胶作为压裂人工隔板材料的实验研究[J]. 油田化学, 2011, 28(1):24-27. |
[20] | YANG Kefeng, MA Xinfang, ZHANG Shicheng, et al. Laboratory research on gel as fracturing artificial barrier material[J]. Oilfield Chemistry, 2011, 28(1): 24-27. |
/
〈 | 〉 |