油气藏评价与开发 >
2022 , Vol. 12 >Issue 5: 734 - 740
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2022.05.004
CO2驱气机理与提高采收率评价模型
收稿日期: 2022-03-07
网络出版日期: 2022-09-27
基金资助
中国石油科技项目“CO2驱提高气藏采收率可行性研究”(ks2021-01-04);“老气田废弃气田CCUS-EGR/CCS研究与试验”(kt2022-9-8);国家科技重大专项“页岩气气藏工程及采气工艺技术”(2017ZX05037)
Mechanism and calculation model of EOR by CO2 flooding
Received date: 2022-03-07
Online published: 2022-09-27
中国天然气探明储量巨大,但实现天然气长期规模稳产,面临复杂气藏提高采收率等系列挑战,尤以页岩气、煤层气和致密气等非常规资源为甚。碳中和背景下,驱气类CCUS(碳捕集、利用与封存)技术具有广阔应用前景。将CO2驱提高天然气藏采收率的主要机理总结为优势吸附置换、连续对流排驱、补充气藏能量3种类型,并认为吸附态、游离态和溶解态这3种天然气的赋存状态划分适用于所有类型气藏,推导获得了CO2驱提高气藏采收率效果预测方法。应用该方法进行测算认为,CO2驱有望提高页岩气采收率20个百分点以上。为突破大幅度提高天然气采收率技术,建议针对具有较好碳封存条件的气藏开展CO2驱提高天然气采收率潜力评价,优选目标气藏进行经济可行性评估,并开展多种类型的CO2驱提高气藏采收率重大开发试验,检验烟气组分协同驱替效果和扩大CO2波及体积技术。
王高峰 , 廖广志 , 李宏斌 , 胡志明 , 魏宁 , 丛连铸 . CO2驱气机理与提高采收率评价模型[J]. 油气藏评价与开发, 2022 , 12(5) : 734 -740 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.05.004
The proved reserves of natural gas in place in China is huge. However, realizing the long-term large scale stable production of natural gas faces a series of challenges such as enhanced gas recovery(EGR) of complex gas reservoirs, especially for those unconventional resources such as shale gas, coalbed methane and tight sand gas. Under the background of carbon neutralization, CCUS-EGR technology has broad application prospects due to owing the functions of increasing gas rate and carbon reduction. The main EGR mechanisms for CO2 flooding are summarized into three types: substitution due to dominant adsorption of carbon dioxide, continuous convective displacement and gas reservoir energy supplement. Under the consideration that the classification of occurrence states of the adsorbed, free and dissolved natural gas are applicable to all types of the gas reservoirs. The prediction method of increased natural gas ultimate recovery factor by CO2 flooding is further deduced. It is found that CO2 flooding is expected to improve shale gas recovery of more than 20 percentage points by this method. In order to break through the technology of greatly improving natural gas recovery, it is suggested to evaluate the potential of CO2 flooding to improve natural gas recovery for gas reservoirs with good geological sequestration conditions, assess the economic feasibility of CCUS-EGR technology applying in target gas reservoirs, and carry out major pilot tests of CO2 flooding in various types of gas reservoirs. The synergistic displacement effect of flue gas components and the technology of expanding CO2 sweeping volume should be focused especially.
[1] | 自然资源部. 全国石油天然气资源勘查开采情况通报[R]. 北京: 中华人民共和国自然资源部, 2021. |
[1] | Ministry of Natural Resources. National oil and gas resources exploration and exploitation[R]. Beijing: Ministry of Natural Resources(PRC), 2021. |
[2] | 郭平, 景莎莎, 彭彩珍. 气藏提高采收率技术及其对策[J]. 天然气工业, 2014, 34(2):48-55. |
[2] | GUO Ping, JING Shasha, PENG Caizhen. Technology and countermeasures for gas recovery enhancement[J]. Natural Gas Industry, 2014, 34(2): 48-55. |
[3] | 房涛, 张立宽, 刘乃贵, 等. 核磁共振技术定量表征致密砂岩气储层孔隙结构——以临清坳陷东部石炭系—二叠系致密砂岩储层为例[J]. 石油学报, 2017, 38(8):902-915. |
[3] | FANG Tao, ZHANG Likuan, LIU Naigui, et al. Quantitative characterization of pore structure of tight gas sandstone reservoirs by NMR T2 spectrum technology:a case study of Carboniferous-Permian tight sandstone reservoir in Linqing depression[J]. Acta Petrolei Sinica, 2017, 38(8): 902-915. |
[4] | 王国亭, 何东博, 王少飞, 等. 苏里格致密砂岩气田储层岩石孔隙结构及储集性能特征[J]. 石油学报, 2013, 34(4):660-666. |
[4] | WANG Guoting, HE Dongbo, WANG Shaofei, et al. Characteristics of the pore structure and storage capability of Sulige tight sandstone gasfield[J]. Acta Petrolei Sinica, 2013, 34(4): 660-666. |
[5] | 焦方正. 非常规油气之“非常规”再认识[J]. 石油勘探与开发, 2019, 46(5):803-810. |
[5] | JIAO Fangzheng. Re-recognition of “unconventional” in unconventional oil and gas[J]. Petroleum Exploration & Development, 2019, 46(5): 803-810. |
[6] | 李智锋, 李治平, 苗丽丽, 等. 页岩气藏纳米孔隙气体渗流特征分析[J]. 天然气地球科学, 2013, 24(5):1042-1047. |
[6] | LI Zhifeng, LI Zhiping, MIAO Lili, et al. Gas Flow Characteristics in Nanoscale Pores of Shale Gas[J]. Natural Gas Geoscience, 2013, 24(5): 1042-1047. |
[7] | 张曙光, 石京平, 刘庆菊, 等. 低渗致密砂岩气藏岩石的孔隙结构与物性特征[J]. 新疆地质, 2004, 22(4):438-441. |
[7] | ZHANG Shuguang, SHI Jingping, LIU Qingju, et al. Research on Pore Structure and Character of Tight Sand Gas Reservoirs[J]. Xinjiang Geology, 2004, 22(4): 438-441. |
[8] | 王晓琦, 翟增强, 金旭, 等. 地层条件下页岩有机质孔隙内CO2与CH4竞争吸附的分子模拟[J]. 石油勘探与开发, 2016, 43(5:):772-779. |
[8] | WANG Xiaoqi, ZHAI Zengqiang, JIN Xu, et al. Molecular simulation of CO2/CH4 competitive adsorption in organic matter pores in shale under certain geological conditions[J]. Petroleum Exploration and Development, 2016, 43(5): 772-779. |
[9] | 张雪芬, 陆现彩, 张林晔, 等. 页岩气的赋存形式研究及其石油地质意义[J]. 地球科学进展, 2010, 25(6):597-604. |
[9] | ZHANG Xuefen, LU Xiancai, ZHANG Linye, et al. Occurrences of shale gas and their petroleum geological significance[J]. Advances in Earth Science, 2010, 25(6): 597-604. |
[10] | 王朋, 孙灵辉, 王核, 等. 库车坳陷下侏罗统阿合组致密砂岩储层孔隙微观结构特征及其对致密气富集的控制作用[J]. 石油与天然气地质, 2020, 41(2):295-304. |
[10] | WANG Peng, SUN Linghui, WANG He, et al. Microscopic pore structure of Ahe tight sand gas reservoirs of the Low Jurassic in Kuqa Depression and its controls on tight gas enrichment[J]. Oil & Gas Geology, 2020, 41(2): 295-304. |
[11] | 降文萍, 张群, 崔永君, 等. 煤吸附气体的量子化学特性及其应用[J]. 天然气地球科学, 2014, 25(3):444-452. |
[11] | JIANG Wenping, ZHANG Qun, CUI Yongjun, et al. Quantum chemistry characteristics of coal adsorbing gas and their applications[J]. Natural Gas Geoscience, 2014, 25(3): 444-452. |
[12] | 隋宏光, 姚军. CO2/CH4在干酪根中竞争吸附规律的分子模拟[J]. 中国石油大学学报(自然科学版), 2016, 40(2):147-154. |
[12] | SUI Hongguang, YAO Jun. Molecular simulation of CO2/CH4 competitive adsorption in kerogen[J]. China University of Petroleum (Edition of Natural science), 2016, 40(2):147-154. |
[13] | 何应付, 张亚蒲, 刘学伟. 煤层气藏单相气体渗流特征实验研究[J]. 中国煤层气, 2009, 6(1):10-14. |
[13] | HE Yingfu, ZHANG Yapu, LIU Xuewei. Experimental research on permeation characteristics of single phase gas in CBM reservoirs[J]. China Coalbed Methane, 2009, 6(1): 10-14. |
[14] | 中科院渗流流体力学研究所. 二氧化碳提高页岩气采收率机理研究[R]. 北京: 中国石油勘探开发研究院, 2020. |
[14] | Institute of Porous Flow & Fluid Mechanics(CAS). Mechanism of CO2 enhanced shale gas recovery[R]. Beijing: Research Institute of petroleum Exploration & Development, 2020. |
[15] | 叶建平, 冯三利, 范志强, 等. 沁水盆地南部注二氧化碳提高煤层气采收率微型先导性试验研究[J]. 石油学报, 2007, 28(4):77-80. |
[15] | YE Jianping, FENG Sanli, FAN Zhiqiang, et al. Micro-pilot test for enhanced coalbed methane recovery by injecting carbon dioxide in south part of Qinshui Basin[J]. Acta Petrolei Sinica, 2007, 28(4): 77-80. |
[16] | 中科院武汉岩土力学研究所. 二氧化碳驱替煤层气机理研究[R]. 北京: 中国科学院, 2020. |
[16] | Institute of Rock and Soil Mechanics(CAS). Study on the mechanism of CO2 enhanced coalbed methane gas[R]. Beijing: Chinese Academy of Sciences, 2020. |
[17] | 陈文钢, 李东泽. NH3作为CO2置换CH4水合物促进剂的分子动力学模拟研究[J]. 石油与天然气化工, 2021, 50(5):50-53. |
[17] | CHEN Wengang, LI Dongze. Molecular dynamics simulation of NH3 as a promoter for CO2 replacement of CH4 hydrate[J]. Chemical Engineering of Oil & Gas, 2021, 50(5): 50-53. |
[18] | 李士伦, 张正卿, 冉新权. 注气提高石油采收率技术[M]. 成都: 四川科学技术出版社, 2001. |
[18] | LI Shilun, ZHANG Zhengqing, RAN Xinquan. Gas injection enhanced oil recovery technology[M]. Chengdu: Sichuan Science & Technology Press, 2001. |
[19] | 秦积舜, 韩海水, 刘晓蕾. 美国CO2驱油技术应用及启示[J]. 石油勘探与开发, 2015, 42(2):209-216. |
[19] | QIN Jishun, HAN Haishui, LIU Xiaolei. Application and enlightenment of carbon dioxide flooding in the United States of America[J]. Petroleum Exploration & Development, 2015, 42(2): 209-216. |
[20] | 廖广志, 王红庄, 王正茂. 注空气开发理论与技术[M]. 北京: 石油工业出版社, 2020. |
[20] | LIAO Guangzhi, WANG Hongzhuang, WANG Zhengmao. Theory and technology oilfield air injection development[M]. Beijing: Petroleum Industry Press, 2020. |
[21] | 俞凯, 刘伟, 陈祖华. 陆相低渗透油藏CO2混相驱技术[M]. 北京: 中国石化出版社, 2016. |
[21] | YU Kai, LIU Wei, CHEN Zuhua. CO2 miscible flooding technology in continental low permeability reservoirs[M]. Beijing: China Petrochemical Industry Press, 2016. |
[22] | 胡永乐, 郝明强, 陈国利. 注二氧化碳提高石油采收率技术[M]. 北京: 石油工业出版社, 2018. |
[22] | HU Yongle, HAO Mingqiang, CHEN Guoli. Technology of carbon diaxide injection to enhance oil recovery[M]. Beijing: Petroleum Industry Press, 2018. |
[23] | 王高峰, 祝孝华, 潘若生. CCUS-EOR实用技术[M]. 北京: 石油工业出版社, 2022. |
[23] | WANG Gaofeng, ZHU Xiaohua, PAN Ruosheng. Practical technology of CCUS-EOR[M]. Beijing: Petroleum Industry Press, 2022. |
[24] | 孙龙德. 塔里木盆地凝析气田开发[M]. 北京: 石油工业出版社, 2003. |
[24] | SUN Longde. Cycling gas injection for condensate gas reservoir in Tarim Basin[M]. Beijing: Petroleum Industry Press, 2003. |
[25] | 李敬松, 李相方, 周涌沂, 等. 凝析气藏循环注气新方法[J]. 天然气工业, 2004, 24(7):76-79. |
[25] | LI Jingsong, LI Xiangfang, ZHOU Yongxi, et al. New method of cyclic gas injection for condensate reservoirs[J]. Natural Gas Industry, 2004, 24(7): 76-79. |
[26] | 朱维耀, 江同文, 焦玉卫. 凝析气藏相变传质渗流理论和高效开发技术[M]. 北京: 石油工业出版社, 2016. |
[26] | ZHU Weiyao, JIANG Tongwen, JIAO Yuwei. Phase change mass transfer seepage theory and efficient development technology of condensate gas reservoirs[M]. Beijing: Petroleum Industry Press, 2016. |
[27] | 秦积舜, 李永亮, 吴德斌, 等. CCUS全球进展与中国对策建议[J]. 油气地质与采收率, 2020, 27(1):20-28. |
[27] | QIN Jishun, LI Yongliang, WU Debin, et al. CCUS global progress and China’s policy suggestions[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 20-28. |
[28] | 王高峰, 秦积舜, 孙伟善. 碳捕集利用与封存案例分析及产业发展建议[M]. 北京: 化学工业出版社, 2020. |
[28] | WANG Gaofeng, QIN Jishun, SUN Weishan. CCUS cases analysis and industrial development suggestions[M]. Beijing: Chemistry Industry Press, 2020. |
[29] | 李媛, 刘世常, 张寅晖. H2S与CO2共存条件下气田地面集输系统内腐蚀影响因素分析方法研究[J]. 石油与天然气化工, 2020, 49(1):82-86. |
[29] | LI Yuan, LIU Shichang, ZHANG Yinhui. Study on analysis method of internal corrosion affecting factor under the coexistence of CO2 and H2S in surface gathering system[J]. Chemical Engineering of Oil & Gas, 2020, 49(1): 82-86. |
[30] | 秦积舜, 张可, 陈兴隆. 高含水后CO2驱油机理的探讨[J]. 石油学报, 2010, 31(5):797-800. |
[30] | QIN Jishun, ZHANG Ke, CHEN Xinglong. Mechanism of the CO2 flooding as reservoirs containing high water[J]. Acta Petrolei Sinica, 2010, 31(5): 797-800. |
[31] | 汤勇, 张超, 杜志敏, 等. CO2驱提高气藏采收率及埋存实验[J]. 油气藏评价与开发, 2015, 5(5):34-40. |
[31] | TANG Yong, ZHANG Chao, DU Zhimin, et al. Experiments on enhancing gas recovery and sequestration by CO2 displacement[J]. Reservoir Evaluation and Development, 2015, 5(5): 34-40. |
[32] | 赵丹, 蔡长宏, 安珏东, 等. 页岩中基于孔隙度和有机碳含量的甲烷吸附量计算[J]. 石油与天然气化工, 2021, 50(2):88-92. |
[32] | ZHAO Dan, CAI Changhong, AN Juedong, et al. Calculation of methane adsorption in shale based on porosity and organic carbon content[J]. Chemical Engineering of Oil & Gas, 2021, 50(2): 88-92. |
[33] | 王高峰, 李花花, 李金龙. 低渗透油藏混相驱合理注气时机[J]. 科学技术与工程, 2016, 16(17):145-148. |
[33] | WANG Gaofeng, LI Huahua, LI Jinlong. Timing of gas injection in tight reservoirs[J]. Science Technology & Engineering, 2016, 16(17): 145-148. |
/
〈 | 〉 |