油气藏评价与开发 >
2022 , Vol. 12 >Issue 5: 741 - 747
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2022.05.005
CO2驱前缘运移规律及气窜时机预测方法——以胜利油田G89-1区块为例
收稿日期: 2021-12-28
网络出版日期: 2022-09-27
基金资助
国家自然科学基金项目“致密油藏多段压裂水平井时空耦合流动模拟及参数优化方法”(51974343);青岛市博士后应用研究项目“致密油藏体积压裂支撑剂分布模拟与参数优化研究”(qdyy20200084)
Prediction method of migration law and gas channeling time of CO2 flooding front: A case study of G89-1 Block in Shengli Oilfield
Received date: 2021-12-28
Online published: 2022-09-27
CO2气窜时机预测对CO2气窜预防与提高采收率具有重要意义,目前的研究很少涉及气窜时机的定量表征。根据目标区块油藏参数,应用数值模拟手段分析了原油黏度、储层渗透率、注气速度、注采井距等因素对CO2驱前缘移动规律的影响,建立了考虑多因素影响的气窜时间及气窜时波及系数表征公式,并通过与矿场实际对比,验证了公式的准确性。研究表明:在定压生产条件下,原油黏度越大,波及系数减小。当原油黏度大于3 mPa·s,见气时间增加幅度减缓;储层渗透率变大时,渗流阻力变小,驱替前缘移动速度加快,油井突破时间越早;当注气速度增加,前缘移动速度加快,见气时间提前,当注气速度为2 500 m3/d时,波及系数最小;当注采井距增大时,气体前缘移动速度减慢,油井见气时间延长,当注采井距大于240 m时,继续增大井距,波及系数提高幅度较小。
崔传智 , 闫大伟 , 姚同玉 , 王建 , 张传宝 , 吴忠维 . CO2驱前缘运移规律及气窜时机预测方法——以胜利油田G89-1区块为例[J]. 油气藏评价与开发, 2022 , 12(5) : 741 -747 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.05.005
CO2 gas channeling time prediction is of great significance for CO2 gas channeling prevention and enhanced oil recovery. Current studies rarely involve quantitative characterization of the gas channeling time. According to the parameters of the target block reservoir, the crude oil viscosity, reservoir permeability, gas injection rate and injection-production well spacing and other factors impact on the moving rule of the CO2 drive front is analyzed by the numerical simulation method, then the characterization formula of gas flow time and gas flow influence coefficient considering multiple factors is established, and the accuracy of the formula is verified by comparing with the field practice. The results show that under the condition of constant pressure production, the sweep efficiency decreases with the increase of crude oil viscosity. When the crude oil viscosity is greater than 3 mPa·s, the increase of gas emergence time slows down. When the reservoir permeability increases, the seepage resistance decreases, the displacement front moves faster, and the oil well breaks out earlier. When the gas injection velocity increases, the leading edge movement speed increases and the gas appearance time advances. When the gas injection velocity is 2 500 m3/d, the sweep efficiency is the minimum. When the injection-production well spacing increases, the moving speed of gas front slows down, and the gas emergence time of oil well prolongs. When the injection-production well spacing is larger than 250 m, the well spacing continues to increase, and the sweep efficiency increases slightly.
[1] | 李东霞, 苏玉亮, 高海涛, 等. 二氧化碳非混相驱油黏性指进表征方法及影响因素[J]. 油气地质与采收率, 2010, 17(3):63-66. |
[1] | LI Dongxia, SU Yuliang, GAO Haitao, et al. Characterization method and influencing factors of viscosity index in carbon dioxide immiscible flooding[J]. Petroleum Geology and Recovery Efficiency, 2010, 17(3): 63-66. |
[2] | 徐庆岩, 杨正明, 何英, 等. 特低渗透多层油藏水驱前缘研究[J]. 油气地质与采收率, 2013, 20(2):74-76. |
[2] | XU Qingyan, YANG Zhengming, HE Ying, et al. Study on water drive front of extra-low permeability multilayer reservoir[J]. Petroleum Geology and Recovery Efficiency, 2013, 20(2): 74-76. |
[3] | 宋金贺. 基于平板实验的水驱前缘研究[D]. 大庆: 东北石油大学, 2020. |
[3] | SONG Jinhe. Research on water flooding front based on plate Experiment[D]. Daqing: Northeast Petroleum University, 2020. |
[4] | 曹小朋, 冯其红, 杨勇, 等. CO2-原油混相带运移规律及其对开发效果的影响[J]. 油气地质与采收率, 2021, 28(1):137-143. |
[4] | CAO Xiaopeng, FENG Qihong, YANG Yong, et al. Transport law of CO2-crude oil miscible zone and its influence on development effect[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(1): 137-143. |
[5] | 杨大庆, 尚庆华, 江绍静, 等. 渗透率对低渗油藏CO2驱气窜的影响规律研究[J]. 西南石油大学学报(自然科学版), 2014, 36(4):137-141. |
[5] | YANG Daqing, SHANG Qinghua, JIANG Shaojing, et al. Effect of permeability on gas channeling in CO2 flooding in low permeability reservoir[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2014, 36(4): 137-141. |
[6] | 赵习森, 石立华, 王维波, 等. 非均质特低渗透油藏CO2驱气窜规律研究[J]. 西南石油大学学报(自然科学版), 2017, 39(6):131-139. |
[6] | ZHAO Xisen, SHI Lihua, WANG Weibo, et al. Gas channeling law of CO2 flooding in heterogeneous ultra-low permeability reservoirs[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(6): 131-139. |
[7] | 李承龙, 韩昊. 用灰色模糊综合评估法识别注气初期CO2气窜通道[J]. 大庆石油地质与开发, 2018, 37(6):116-120. |
[7] | LI Chenglong, HAN Hao. Identification of the gas channeling by grey-fuzzy complex judging method at the early stage of CO2 flooding[J]. Petroleum Geology and Oilfield Development in Daqing, 2018, 37(6): 116-120. |
[8] | 伍晓妮. 二氧化碳采油技术研究[D]. 大庆: 东北石油大学, 2015. |
[8] | WU Xiaoni. Research on CO2 recovery technology[D]. Daqing: Northeast Petroleum University, 2015. |
[9] | 杨铁军, 张英芝, 杨正明, 等. 致密砂岩油藏CO2驱油提高采收率机理[J]. 科学技术与工程, 2019, 19(24):113-118. |
[9] | YANG Tiejun, ZHANG Yingzhi, YANG Zhengming, et al. Mechanism of CO2 flooding to enhance oil recovery in tight sandstone reservoirs[J]. Science Technology and Engineering, 2019, 19(24): 113-118. |
[10] | 王微. 低渗透油藏CO2驱油机理及其适应性研究[D]. 西安: 西安石油大学, 2018. |
[10] | WANG Wei. Study on CO2 flooding mechanism and its adaptability in low permeability reservoirs[D]. Xi'an: Xi'an Shiyou University, 2018. |
[11] | 刘颖, 冯明溪. CO2驱提高采收率技术效果的影响因素研究[J]. 内蒙古石油化工, 2019, 45(4):64-67. |
[11] | LIU Ying, FENG Mingxi. Influencing factors of CO2 flooding enhanced oil recovery[J]. Inner Mongolia Petrochemical Industry, 2019, 45(4): 64-67. |
[12] | 李阳. 低渗透油藏CO2驱提高采收率技术进展及展望[J]. 油气地质与采收率, 2020, 27(1):1-10. |
[12] | LI Yang. Progress and prospect of CO2 flooding technology for enhanced oil recovery in low permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 1-10. |
[13] | 孟凡坤, 雷群, 苏玉亮, 等. 低渗透油藏CO2非混相驱前缘移动规律研究[J]. 西南石油大学学报(自然科学版), 2018, 40(3):121-128. |
[13] | MENG Fankun, LEI Qun, SU Yuliang, et al. Law of CO2 immiscible front movement in low-permeability oil reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2018, 40(3): 121-128. |
[14] | 陈昊天. 砾岩油藏注二氧化碳开采波及规律实验研究[D]. 青岛: 中国石油大学(华东), 2019. |
[14] | CHEN Haotian. Experimental study on carbon dioxide injection and recovery wave law in conglomerate reservoir[D]. Qingdao: China University of Petroleum (East China), 2019. |
[15] | 彭锐罡. 特低渗透油藏CO2驱油规律实验研究[D]. 青岛: 中国石油大学(华东), 2017. |
[15] | PENG Ruigang. Experimental study on CO2 flooding law in ultra-low permeability reservoirs[D]. Qingdao: China University of Petroleum (East China), 2017. |
[16] | 李南, 田冀, 谭先红, 等. 低渗透油藏CO2驱微观波及特征[J]. 断块油气田, 2015, 22(2):237-239. |
[16] | LI Nan, TIAN Ji, TAN Xianhong, et al. Microscopic sweeping characteristics of CO2 flooding in low permeability reservoirs[J]. Fault-Block Oil & Gas Field, 2015, 22(2): 237-239. |
[17] | 王昕, 侯磊, 程振华, 等. 段塞流下CO2驱采出流体分离器设计与模拟研究[J]. 石油机械, 2020, 48(12):109-116. |
[17] | WANG Xin, HOU Lei, CHENG Zhenhua, et al. Design and simulation of fluid separator for CO2 flooding under slug flow[J]. China Petroleum Machinery, 2020, 48(12): 109-116. |
[18] | 陈兵, 徐源, 白世星. 管输超临界CO2泄漏过程管内瞬变特性研究[J]. 石油机械, 2020, 48(8):136-142. |
[18] | CHEN Bing, XU Yuan, BAI Shixing. Study on transient flow characteristics in pipeline supercritical CO2 leakage[J]. China Petroleum Machinery, 2020, 48(8): 136-142. |
[19] | 雷欣慧, 郑自刚, 余光明, 等. 特低渗油藏水驱后二氧化碳气水交替驱见效特征[J]. 特种油气藏, 2019, 27(5):113-117. |
[19] | LEI Xinhui, ZHENG Zigang, YU Guangming, et al. Response characteristics of gas-water alternate flooding with CO2 after water flooding in ultra-low permeability reservoirs[J]. Special Oil & Gas Reservoirs, 2019, 27(5): 113-117. |
[20] | 李承龙, 迟博. 一种新型二氧化碳驱特征曲线的建立与应用[J]. 特种油气藏, 2020, 27(2):98-102. |
[20] | LI Chenglong, CHI Bo. A new characteristic curve of CO2 flooding and its application[J]. Special Oil & Gas Reservoirs, 2020, 27(2): 98-102. |
[21] | 郑自刚, 余光明, 雷欣慧, 等. 低渗透储层注水开发贾敏效应实验研究[J]. 特种油气藏, 2020, 27(3):142-147. |
[21] | ZHENG Zigang, YU Guangming, LEI Xinhui, et al. Test and analysis of Jamin effect in waterflooding of low-permeability reservoir[J]. Special Oil & Gas Reservoirs, 2020, 27(3):142-147. |
[22] | 张娟. 陕北W油区延长组长4+5油藏注CO2驱油气窜规律研究及注气方式优选[D]. 西安: 西北大学, 2018. |
[22] | Zhang Juan. Study on CO2 flooding and gas channeling in Chang 4+5 reservoir of Yanchang Formation in W oil block, northern Shaanxi[D]. Xi'an: Northwestern University, 2018. |
/
〈 | 〉 |