方法理论

CO2非混相驱前缘运移及气窜规律室内实验研究

  • 孔维军 ,
  • 崔传智 ,
  • 吴忠维 ,
  • 李立峰 ,
  • 苏书震 ,
  • 张建宁
展开
  • 1.中国石化江苏油田分公司采油一厂,江苏 扬州 225265
    2.中国石油大学(华东)非常规油气开发教育部重点实验室,山东 青岛 266580
孔维军(1974—),男,本科,高级工程师,从事油气田开发研究和生产管理等工作。地址:江苏省扬州市江都区真武镇采油一厂,邮政编码:225265。E-mail: kongwj.jsyt@sinopec.com

收稿日期: 2021-12-15

  网络出版日期: 2022-09-27

基金资助

国家自然科学基金面上项目“致密油藏多段压裂水平井时空耦合流动模拟及参数优化方法”(51974343)

Laboratory experiment of front migration and gas channeling of CO2 immiscible flooding

  • Weijun KONG ,
  • Chuanzhi CUI ,
  • Zhongwei WU ,
  • Lifeng LI ,
  • Shuzhen SU ,
  • Jianning ZHANG
Expand
  • 1. No. 1 Oil Production Plant of Sinopec Jiangsu Oilfield Company, Yangzhou, Jiangsu 225265, China
    2. MOE Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum(East China), Qingdao, Shandong 266580, China

Received date: 2021-12-15

  Online published: 2022-09-27

摘要

目前,前缘运移及气窜规律研究较少通过室内实验手段、从CO2波及角度去探索前缘运移与气窜规律,运用可视化仿真物理模拟装置开展平板岩心CO2非混相驱物理模拟实验,分析原油黏度、储层渗透率、储层非均质性及注入速度等因素对CO2驱前缘运移及气窜规律的影响。研究发现,在注入井定流量注入,生产井定压生产的条件下,原油黏度降低、渗透率降低、储层均质、注入速度变大,可增加CO2非混相驱油采出程度;同时,原油黏度降低、渗透率越低、注入速度增加,也导致油井见气后继续扩大波及的能力增强,即能够缓解气窜。研究结果表明:在注入井定流量注入、生产井定压生产情况下,高注入速度开发能够缓解气窜,并获得较好的开发效果;当注入速度从0.1 mL/min增至2.0 mL/min时,采出程度从15.4 %增至35.3 %,波及系数差从8.3 %增至26.2 %。该研究对CO2非混相驱气窜抑制及提高采收率具有重要意义。

本文引用格式

孔维军 , 崔传智 , 吴忠维 , 李立峰 , 苏书震 , 张建宁 . CO2非混相驱前缘运移及气窜规律室内实验研究[J]. 油气藏评价与开发, 2022 , 12(5) : 764 -776 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.05.008

Abstract

Currently, there are few works on the laws of front migration and gas channeling with laboratory experiments from the aspect of CO2 sweep efficiency. Therefore, a visual physical simulation device is used to carry out the physical simulation experiment of CO2 immiscible flooding of slab core. The influences of factors such as crude oil viscosity, reservoir permeability, reservoir heterogeneity and injection rate on the migration of CO2 immiscible flooding front and gas channeling laws are analyzed. The study found that under the conditions of constant flow injection in injection wells and constant pressure production in production wells, the viscosity of crude oil decreases, the permeability decreases, the reservoir is homogeneous, and the injection speed increases, which will lead to an increase in the recovery degree of CO2 immiscible flooding. Meanwhile, the decrease in the viscosity of crude oil, the lower the permeability, and the increase in the injection rate, also lead to the enhancement of the ability of the oil well to continue to expand sweep factor after gas breakthrough, that is, it can alleviate gas channeling. It is concluded that under the condition of constant flow injection in injection wells and constant pressure production in production wells, high injection rate development can alleviate gas channeling and obtain better development results. When the injection rate increased from 0.1 mL/min to 2 mL/min, the recovery increased from 15.4 % to 35.3 %, and the sweep factor difference increased from 8.3 % to 26.2 %. This research is of great significance for CO2 immiscible flooding gas channeling suppression and enhanced oil recovery.

参考文献

[1] 陈祖华, 汤勇, 王海妹, 等. CO2驱开发后期防气窜综合治理方法研究[J]. 岩性油气藏, 2014, 26(5):102-106.
[1] CHEN Zuhua, TANG Yong, WANG Haimei, et al. Comprehensive treatment of gas channeling at the later stage of CO2 flooding[J]. Lithologic Reservoirs, 2014, 26(5): 102-106.
[2] 李绍杰. 低渗透滩坝砂油藏CO2近混相驱生产特征及气窜规律[J]. 大庆石油地质与开发, 2016, 35(2):110-115.
[2] LI Shaojie. Performances and gas breakthrough law for CO2 near-miscible flooding in the low-permeability bar and shoal oil reservoirs[J]. Petroleum Geology and Oilfield Development in Daqing, 2016, 35(2): 110-115.
[3] 李承龙. 特低渗透油藏二氧化碳驱气窜影响因素及规律[J]. 特种油气藏, 2018, 25(3):82-86.
[3] LI Chenglong. Gas channeling influencing factors and patterns of CO2-flooding in ultra-low permeability oil reservoir[J]. Special Oil & Gas Reservoirs, 2018, 25(3): 82-86.
[4] 田巍. 老油田注CO2开发提高注气能力的方法[J]. 石油与天然气化工, 2020, 49(3):72-77.
[4] TIAN Wei. A method of inproving gas injection capcity by CO2 injection for old oilfield[J]. Chemical Engineering of Oil & Gas, 2020, 49(3): 72-77.
[5] 张世明. 低渗透油藏CO2驱气窜通道识别方法[J]. 油气地质与采收率, 2020, 27(1):101-106.
[5] ZHANG Shiming. Study on identification method for gas channeling of CO2 flooding in low permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 101-106.
[6] 周冰, 金之钧, 刘全有, 等. 苏北盆地黄桥地区富CO2流体对油气储-盖系统的改造作用[J]. 石油与天然气地质, 2020, 41(6):1151-1161.
[6] ZHOU Bing, JIN Zhijun, LIU Quanyou, et al. Alteration of reservoir caprock systems by using CO2 rich fluid in the Huangqiao area, North Jiangsu Basin[J]. Oil & Gas Geology, 2020, 41(6): 1151-1161.
[7] 赵清民, 伦增珉, 章晓庆, 等. 页岩油注CO2动用机理[J]. 石油与天然气地质, 2019, 40(6):1333-1338.
[7] ZHAO Qingmin, LUN Zengmin, ZHANG Xiaoqing, et al. Mechanism of shale oil mobilization under CO2 injection[J]. Oil & Gas Geology, 2019, 40(6): 1333-1338.
[8] 何应付, 赵淑霞, 伦增珉, 等. 液态CO2流变特性与滤失性能分析[J]. 钻采工艺, 2020, 43(3):38-41.
[8] HE Yingfu, ZHAO Shuxia, LUN Zengmin, et al. Analysis of rheological and filtration properties of supercritical CO2[J]. Drilling & Production Technology, 2020, 43(3): 38-41.
[9] 狄伟. 注CO2对超低渗储层的渗透性伤害研究[J]. 钻采工艺, 2020, 43(2):53-56.
[9] DI Wei. Study on the damage of CO2 injection to permeability of ultra-low permeability reservoirs[J]. Drilling & Production Technology, 2020, 43(2): 53-56.
[10] 高军, 闫治东, 魏本兴, 等. 青西油田多元复合吞吐研究与应用——以柳5X井为例[J]. 钻采工艺, 2020, 43(4):43-46.
[10] GAO Jun, YAN Zhidong, WEI Benxing, et al. Research and application of multiple composite steam stimulation in Qingxi Oilfield: Taking Well Liu 5X as an example[J]. Drilling & Production Technology, 2020, 43(4): 43-46.
[11] 董炳阳. 低渗挥发性油藏CO2驱注入时机室内实验研究[J]. 石油地质与工程, 2020, 34(3):81-84.
[11] DONG Bingyang. Laboratory test on the timing of CO2 flooding in low permeability volatile reservoirs[J]. Petroleum Geology & Engineering, 2020, 34(3): 81-84.
[12] 崔传智, 苏鑫坤, 姚同玉, 等. 低渗透油藏CO2混相驱注采耦合波及特征及气窜阶段定量划分方法[J/OL]. 特种油气藏: 1-6[2022-08-02]. http://kns.cnki.net/kcms/detail/21.1357.te.20220726.1315.030.html.
[12] CUI Chuanzhi, SU Xinkun, YAO Tongyu, et al. Characteristics of injection-production coupling sweep and quantitative division method of gas channeling stages in CO2 miscible flooding in low permeability reservoirs[J/OL]. Special Oil & Gas Reservoirs: 1-6[2022-08-02]. http://kns.cnki.net/kcms/detail/21.1357.te.20220726.1315.030.html.
[13] 孔凡群. 低渗透油藏CO2非混相驱气窜影响因素试验[J]. 中国石油大学学报(自然科学版), 2021, 45(3):97-103.
[13] KONG Fanqun. Experimental study on gas channeling during CO2 immiscible flooding for low-permeability oil reservoirs[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(3): 97-103.
[14] 韩倩, 徐骞, 张宏录, 等. 草舍油田CO2驱防气窜调驱体系研究及性能评价[J]. 石油地质与工程, 2021, 35(2):67-71.
[14] HAN Qian, XU Qian, ZHANG Honglu, et al. Research and performance evaluation of CO2 flooding gas channeling prevention and profile control flooding system in Caoshe oilfield[J]. Petroleum Geology and Engineering, 2021, 35(2): 67-71.
[15] 钱卫明, 林刚, 王波, 等. 底水驱稠油油藏水平井多轮次CO2吞吐配套技术及参数评价[J]. 石油地质与工程, 2020, 34(1):107-111.
[15] QIAN Weiming, LIN Gang, WANG Bo, et al. Multi-cycle CO2 huff and puff matching technology and parameter evaluation for horizontal wells in heavy oil reservoirs with bottom water drive[J]. Petroleum Geology & Engineering, 2020, 34(1): 107-111.
[16] 陈龙龙, 白远, 云彦舒, 等. 气体示踪在非均质特低渗透油藏二氧化碳驱气窜监测中的应用[J]. 钻采工艺, 2020, 43(3):56-59.
[16] CHEN Longlong, BAI Yuan, YUN Yanshu, et al. Application of CO2 channeling monitoring for using gas tracer in ultra-low-permeability reservoirs CO2 flooding[J]. Drilling & Production Technology, 2020, 43(3): 56-59.
[17] 杨大庆, 尚庆华, 江绍静, 等. 渗透率对低渗油藏CO2驱气窜的影响规律研究[J]. 西南石油大学学报(自然科学版), 2014, 36(4):137-141.
[17] YANG Daqing, SHANG Qinghua, JIANG Shaojing, et al. A study about influence law of permeability on gas channeling of CO2 flooding under low permeability reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2014, 36(4): 137-141.
[18] 石立华, 党海龙, 康胜松, 等. 注入压力对CO2驱气窜影响规律及裂缝封堵研究[J]. 西南石油大学学报(自然科学版), 2018, 40(1):149-156.
[18] SHI Lihua, DANG Hailong, KANG Shengsong, et al. Effects of injection pressure on gas channeling during CO2 flooding and a study on sealing of cracks[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2018, 40(1): 149-156.
[19] 王维, 庞波, 郭振华. 裂缝性低渗油藏CO2气窜规律分析方法及其应用[J]. 西安石油大学学报(自然科学版), 2021, 36(6),62-68.
[19] WANG Wei, PANG Bo, GUO Zhenhua. A new method for analyzing CO2 gas channeling in fractured low-permeability reservoir and its application[J]. Journal of Xi’an Shiyou University (Science & Technology Edition), 2021, 36(6): 62-68.
[20] 赵习森, 石立华, 王维波, 等. 非均质特低渗透油藏CO2驱气窜规律研究[J]. 西南石油大学学报(自然科学版), 2017, 39(6):131-139.
[20] ZHAO Xisen, SHI Lihua, WANG Weibo, et al. CO2 channeling sealing in ultra-low-permeability reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2017, 39(6): 131-139.
[21] 张书勤, 石立华, 康恺, 等. 非均质性对低/特低渗透油藏CO2驱气窜的影响规律及封堵实验研究[J]. 钻采工艺, 2018, 41(2):69-72.
[21] ZHANG Shuqin, SHI Lihua, KANG Kai, et al. Effect of heterogeneity on CO2 flooding gas channeling in low/ultra-low permeability reservoirs and experimental study on plugging[J]. Drilling & Production Technology, 2018, 41(2): 69-72.
[22] 贾凯锋, 王玉霞, 王世璐, 等. 储集层非均质性对低渗透油藏CO2驱油气窜的影响规律[J]. 新疆石油地质, 2019, 40(2):208-212.
[22] JIA Kaifeng, WANG Yuxia, WANG Shilu, et al. Influences of reservoir heterogeneity on gas channeling during CO2 flooding in low permeability reservoirs[J]. Xinjiang Petroleum Geology, 2019, 40(2): 208-212.
[23] 苏玉亮, 吴晓东, 侯艳红, 等. 低渗透油藏CO2混相驱油机制及影响因素[J]. 中国石油大学学报(自然科学版), 2011, 35(3):99-102.
[23] SU Yuliang, WU Xiaodong, HOU Yanhong, et al. Mechanism of CO2 miscible displacement in low permeability reservoir and influencing factor[J]. Journal of China University of Petroleum(Edition of Natural Science), 2011, 35(3): 99-102.
[24] 周锋, 高伟, 李晓明, 等. 二维多孔介质CO2混相驱油质量浓度分布[J]. 断块油气田, 2021, 28(1):120-123.
[24] ZHOU Feng, GAO Wei, LI Xiaoming, et al. Mass concentration distribution of CO2 miscible flooding in 2-D porous media[J]. Fault-Block Oil & Gas Field, 2021, 28(1): 120-123.
[25] 唐凡, 朱永刚, 张彦明, 等. CO2注入对储层多孔介质及赋存流体性质影响实验研究[J]. 石油与天然气化工, 2021, 50(1):72-76.
[25] TANG Fan, ZHU Yonggang, ZHANG Yanming, et al. Experimental research of the effect of CO2 injection on Porous Media and fluid property in reservoir[J]. Chemical Engineering of Oil & Gas, 2021, 50(1): 72-76.
[26] 田巍. CO2驱提高采收率方法在深层低渗透油藏的应用[J]. 石油地质与工程, 2020, 34(4):50-54.
[26] TIAN Wei. Application of CO2-EOR in the deep low permeability reservoir[J]. Petroleum Geology & Engineering, 2020, 34(4): 50-54.
[27] 刘刚. 致密油体积压裂水平井CO2吞吐注采参数优化[J]. 石油地质与工程, 2020, 34(2):90-93.
[27] LIU Gang. Optimization of injection and production parameters of CO2 huff and puff by horizontal wells with volume fracturing in tight oil[J]. Petroleum Geology & Engineering, 2020, 34(2): 90-93.
[28] 李友全, 阎燕, 于伟杰. 利用试井技术确定低渗透油藏CO2驱替前缘的方法[J]. 油气地质与采收率, 2020, 27(1):120-125.
[28] LI Youquan, YAN Yan, YU Weijie. Study on method of determining CO2 flooding displacement front in low-permeability reservoirs using well testing technology[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 120-125.
[29] 鞠斌山, 于金彪, 吕广忠, 等. 低渗透油藏CO2驱油数值模拟方法与应用[J]. 油气地质与采收率, 2020, 27(1):126-133.
[29] JU Binshan, YU Jinbiao, LYU Guangzhong, et al. Numerical simulation method and application of CO2 flooding in low permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 126-133.
文章导航

/